Abstract:
The present invention relates to in vitro methods for aiding in the detection of hepatocellular carcinoma (HCC) in a subject. The method may comprise determining the amount of one or more N-glycan structure attached to haptoglobin (i.e. of the β-chain of haptoglobin having the sequence given in SEQ ID NO: 1) in a sample obtained from said subject and comparing the amount of said one or more glycan structure to a reference amount of said one or more glycan structure, wherein an altered amount of said one or more glycan structure in said patient sample relative to the reference amount of said one or more glycan structure is indicative for HCC. Further, the present invention relates to the use of one or more glycan structure attached to haptoglobinor of a glycopeptide derived from haptoglobin in combination with AFP and/or PIVKA-II in the detection of HCC.
Abstract:
The present invention relates to methods for assessing whether or not a patient has aggressive prostate cancer by determining the levels of particular glycoforms attached to prostate specific antigen (PSA) protein in a biofluid sample of a subject, and comparing the determined level or concentration to a reference. The methods are particularly useful for assessing subjects that have 2-10 ng/ml total PSA in the subject's serum.
Abstract:
The present invention relates to an antibody or an antigen binding fragment thereof that specifically binds to α-1,6-core-fucosylated prostate specific antigen (PSA) and partial sequences thereof comprising the α-1,6-core-fucose residue. The antibodies and antigen binding fragments significantly discriminate between core-fucosylated PSA or core-fucosylated PSA partial sequences and other glycosylated PSA species and partial sequences thereof lacking the core-fucose residue, including aglycosylated PSA, as well as core-fucosylated glycan in other contexts. The present invention further relates to nucleic acid molecules encoding the light chain variable region or the heavy chain variable region of the antibody of the invention, as well as vectors comprising said nucleic acid molecules. The invention also relates to a host cell comprising the vector(s) of the invention, as well as to methods for the production of an antibody or antigen binding fragment of the invention comprising culturing the host cell of the invention under suitable conditions and isolating the antibody produced. Furthermore, the present invention relates to an antibody obtainable by the method of the invention, to a composition comprising at least one of the antibody or antigen binding fragment of the invention, the nucleic acid molecule of the invention, the vector of the invention, the host cell of the invention or the antibody produced by the method of the invention. The present invention also relates to the use of an antibody or antigen binding fragment of the invention for detecting and discriminating core-fucosylated PSA or core-fucosylated partial sequences thereof in biological samples.
Abstract:
The disclosure relates to an in vitro method for detecting an antibody to p53 (anti-p53 antibody) in a sample, the method comprising: incubating a sample to be analyzed with a p53 capture antigen and a p53 detection antigen, whereby a complex comprising the p53 capture antigen, the anti-p53 antibody and the p53 detection antigen is formed, separating the complex formed from unbound detection antigen and measuring the complex obtained via the detection antigen comprised therein, thereby detecting the anti-p53 antibody comprised in the sample.
Abstract:
The present invention relates to a method for differentiating in a patient who suffers from acute shortness of breath (acute dyspnea) between pulmonary disease and cardiac disease. The method is based on measuring the levels of seprase and of a cardiac marker in a sample from said patient. Further envisaged are kits and devices adapted to carry out the method of the present invention.
Abstract:
The present invention relates to in vitro methods for aiding in the detection of hepatocellular carcinoma (HCC) in a subject comprising determining the amount of one or more glycan structure at position N207 of haptoglobin (i.e. of the ß-chain of haptoglobin having the sequence given in SEQ ID NO: 1) in a sample obtained from said subject. Also disclosed are a glycan structure as well as a glycopeptide comprising said glycan structure, both of great utility in the detection of HCC. Further, the present invention relates to the use of one or more glycan structure at position N207 or of a glycopeptide comprising N207 of haptoglobin in combination with AFP and/or PIVKA in the detection of HCC.
Abstract:
An in vitro method is disclosed for detecting an antibody to p53 (anti-p53 antibody) in a sample, the method comprising: incubating a sample to be analyzed with a p53 capture antigen and a p53 detection antigen, whereby a complex comprising the p53 capture antigen, the anti-p53 antibody and the p53 detection antigen is formed, separating the complex formed from unbound detection antigen and measuring the complex obtained via the detection antigen comprised therein, thereby detecting the anti-p53 antibody comprised in the sample.
Abstract:
An in vitro method is disclosed for detecting an antibody to p53 (anti-p53 antibody) in a sample, the method comprising: incubating a sample to be analyzed with a p53 capture antigen and a p53 detection antigen, whereby a complex comprising the p53 capture antigen, the anti-p53 antibody and the p53 detection antigen is formed, separating the complex formed from unbound detection antigen and measuring the complex obtained via the detection antigen comprised therein, thereby detecting the anti-p53 antibody comprised in the sample.
Abstract:
The disclosure relates to an in vitro method for detecting an antibody to p53 (anti-p53 antibody) in a sample, the method comprising: incubating a sample to be analyzed with a p53 capture antigen and a p53 detection antigen, whereby a complex comprising the p53 capture antigen, the anti-p53 antibody and the p53 detection antigen is formed, separating the complex formed from unbound detection antigen and measuring the complex obtained via the detection antigen comprised therein, thereby detecting the anti-p53 antibody comprised in the sample.