Abstract:
The present disclosure describes compositions comprising an acrylic polymer binder and nano-particles less than about 100 nm that provide a hydrophobic or superhydrophobic coating that may also display oleophobicity. The coating composition may advantageously be prepared using VOC exempt compounds that are compatible with a variety of surface materials including many electronic components. In addition, the coating composition may also be rapidly dried rendering it useful for the rapid preparation of coated objects and surfaces in manufacturing/assembly line environments.
Abstract:
The present disclosure describes compositions comprising an acrylic polymer binder and nano-particles less than about 100 nm that provide a hydrophobic or superhydrophobic coating that may also display oleophobicity. The coating composition may advantageously be prepared using VOC exempt compounds that are compatible with a variety of surface materials including many electronic components. In addition, the coating composition may also be rapidly dried rendering it useful for the rapid preparation of coated objects and surfaces in manufacturing/assembly line environments.
Abstract:
The present disclosure describes compositions comprising an acrylic polymer binder and nano-particles less than about 100 nm that provide a hydrophobic or superhydrophobic coating that may also display oleophobicity. The coating composition may advantageously be prepared using VOC exempt compounds that are compatible with a variety of surface materials including many electronic components. In addition, the coating composition may also be rapidly dried rendering it useful for the rapid preparation of coated objects and surfaces in manufacturing/assembly line environments.
Abstract:
This disclosure deals with novel formulations to create highly durable hydrophobic, superhydrophobic, oleophobic and/or superoleophobic surfaces that can be nearly transparent. The formulations of this invention can be applied by -dip, spray and painting processes.
Abstract:
This disclosure deals with novel formulations to create highly durable hydrophobic, superhydrophobic, oleophobic and/or superoleophobic surfaces that can be nearly transparent. The formulations of this invention can be applied by dip, spray and painting processes.
Abstract:
Methods for preparing durable hydrophobic, oleophobic, and anti-icing coatings by applying a composition that comprises a lacquer binder, one or more types of particles having a size of about 30 microns to about 225 micron, and one or more types of particles modified with hexamethyldisilazane, polydimethylsiloxane or silanizing agents are set forth, along with the resulting coatings and methods of their use.
Abstract:
The present disclosure describes compositions comprising an acrylic polymer binder and nano-particles less than about 100 nm that provide a hydrophobic or superhydrophobic coating that may also display oleophobicity. The coating composition may advantageously be prepared using VOC exempt compounds that are compatible with a variety of surface materials including many electronic components. In addition, the coating composition may also be rapidly dried rendering it useful for the rapid preparation of coated objects and surfaces in manufacturing/assembly line environments.
Abstract:
This disclosure deals with novel formulations to create highly durable hydrophobic, superhydrophobic, oleophobic and/or superoleophobic surfaces that can be nearly transparent. The formulations of this invention can be applied by dip, spray and painting processes.