Abstract:
A plastic article is described having a substrate of a substantially transparent substrate having a thickness of from 0.2 mm to 3.0 mm, and including a thermoplastic composition comprising a polycarbonate and having a melt flow index as defined by ASTM D1238 of 10 g/10 min. to 50 g/10 min. at 300° C. and a 1.2 kg load, the thermoplastic composition including a polycarbonate, the thermoplastic composition comprising 20 mol % to 80 mol % of specified cyclohexylidene-bridged carbonate units and 80 mol % to 20 mol % of specified other carbonate units. The substrate has a hard coat thereon that provides the article with a pencil hardness of at least 5H as determined according to JIS K5400 using a 0.75 kgf load.
Abstract:
Disclosed herein is a flame retardant composition comprising 10 to 90 weight percent of a linear polycarbonate; 5 to 50 weight percent of a polysiloxane-polycarbonate copolymer; where the polysiloxane-polycarbonate copolymer comprises 10 weight percent or more of polysiloxane and where the molecular weight of the polysiloxane is 30,000 grams per mole or greater; and 1 to 20 weight percent of a phosphazene compound; where all weight percents are based on the total weight of the composition.
Abstract:
Disclosed herein is a flame retardant composition comprising 10 to 90 weight percent of a linear polycarbonate; a branched polycarbonate; 10 to 70 weight percent of a polysiloxane-polycarbonate copolymer; and 1 to 20 weight percent of a phosphazene compound; were all weight percents are based on the total weight of the composition. Disclosed herein too is a method comprising blending 10 to 90 weight percent of a linear polycarbonate; a branched polycarbonate; 10 to 70 weight percent of a polysiloxane-polycarbonate copolymer; and 1 to 20 weight percent of a phosphazene compound; to form a flame retardant composition; were all weight percents are based on the total weight of the composition.
Abstract:
Disclosed herein is a flame retardant composition comprising a polycarbonate composition, glass fibers, and a flame retardant that comprises a phenoxyphosphazene compound. Disclosed herein too are methods for manufacturing a flame retardant composition that comprises blending a polycarbonate composition, glass fibers and a flame retardant that comprises a phenoxyphosphazene compound.
Abstract:
A composition includes at least one poly(aliphatic ester)-polycarbonate copolymer, a polysiloxane-polycarbonate copolymer, and glass fibers. The composition exhibits good flow, aesthetic, and impact properties.
Abstract:
Disclosed herein is a flame retardant composition comprising 10 to 90 weight percent of a linear polycarbonate; a branched polycarbonate; 10 to 70 weight percent of a polysiloxane-polycarbonate copolymer; and 1 to 20 weight percent of a phosphazene compound; were all weight percents are based on the total weight of the composition. Disclosed herein too is a method comprising blending 10 to 90 weight percent of a linear polycarbonate; a branched polycarbonate; 10 to 70 weight percent of a polysiloxane-polycarbonate copolymer; and 1 to 20 weight percent of a phosphazene compound; to form a flame retardant composition; were all weight percents are based on the total weight of the composition.
Abstract:
Disclosed herein is a flame retardant composition comprising 10 to 90 weight percent of a linear polycarbonate; 5 to 50 weight percent of a polysiloxane-polycarbonate copolymer; where the polysiloxane-polycarbonate copolymer comprises 10 weight percent or more of polysiloxane and where the molecular weight of the polysiloxane is 30,000 grams per mole or greater; and 1 to 20 weight percent of a phosphazene compound; where all weight percents are based on the total weight of the composition.
Abstract:
Disclosed herein is a flame retardant composition comprising a polycarbonate composition, glass fibers, and a flame retardant that comprises a phenoxyphosphazene compound. Disclosed herein too are methods for manufacturing a flame retardant composition that comprises blending a polycarbonate composition, glass fibers and a flame retardant that comprises a phenoxyphosphazene compound.