Methods and systems for automated monitoring and control of adherence parameters

    公开(公告)号:US10761894B2

    公开(公告)日:2020-09-01

    申请号:US16177289

    申请日:2018-10-31

    Abstract: Exemplary embodiments relate to systems for building a model of changes to data items when information the data items is limited or not directly observed. Exemplary embodiments allow properties of the data items to be inferred using a single data structure and creates a highly granular log of changes to the data item. Using this data structure, the time-varying nature of changes to the data item can be determined. The data structure may be used to identify characteristics associated with a regularly-performed action, to examine how adherence to the action affects a system, and to identify outcomes of non-adherence. Fungible data items may be mapped to a remediable condition or remedy class. This may be accomplished by automatically deriving conditions and remedial information from available information, matching the conditions to remedial classes or types via a customizable mapping, and then calculating adherence for the condition on the available information.

    Methods and Systems for Automated Monitoring and Control of Adherence Parameters

    公开(公告)号:US20190310891A1

    公开(公告)日:2019-10-10

    申请号:US16177289

    申请日:2018-10-31

    Abstract: Exemplary embodiments relate to systems for building a model of changes to data items when information the data items is limited or not directly observed. Exemplary embodiments allow properties of the data items to be inferred using a single data structure and creates a highly granular log of changes to the data item. Using this data structure, the time-varying nature of changes to the data item can be determined. The data structure may be used to identify characteristics associated with a regularly-performed action, to examine how adherence to the action affects a system, and to identify outcomes of non-adherence. Fungible data items may be mapped to a remediable condition or remedy class. This may be accomplished by automatically deriving conditions and remedial information from available information, matching the conditions to remedial classes or types via a customizable mapping, and then calculating adherence for the condition on the available information.

    Methods and systems for automated monitoring and control of adherence parameters

    公开(公告)号:US10929193B2

    公开(公告)日:2021-02-23

    申请号:US16531506

    申请日:2019-08-05

    Abstract: Exemplary embodiments relate to systems for building a model of changes to data items when information the data items is limited or not directly observed. Exemplary embodiments allow properties of the data items to be inferred using a single data structure and creates a highly granular log of changes to the data item. Using this data structure, the time-varying nature of changes to the data item can be determined. The data structure may be used to identify characteristics associated with a regularly-performed action, to examine how adherence to the action affects a system, and to identify outcomes of non-adherence. Fungible data items may be mapped to a remediable condition or remedy class. This may be accomplished by automatically deriving conditions and remedial information from available information, matching the conditions to remedial classes or types via a customizable mapping, and then calculating adherence for the condition on the available information.

    Methods and Systems for Automated Monitoring and Control of Adherence Parameters

    公开(公告)号:US20190354410A1

    公开(公告)日:2019-11-21

    申请号:US16531506

    申请日:2019-08-05

    Abstract: Exemplary embodiments relate to systems for building a model of changes to data items when information the data items is limited or not directly observed. Exemplary embodiments allow properties of the data items to be inferred using a single data structure and creates a highly granular log of changes to the data item. Using this data structure, the time-varying nature of changes to the data item can be determined. The data structure may be used to identify characteristics associated with a regularly-performed action, to examine how adherence to the action affects a system, and to identify outcomes of non-adherence. Fungible data items may be mapped to a remediable condition or remedy class. This may be accomplished by automatically deriving conditions and remedial information from available information, matching the conditions to remedial classes or types via a customizable mapping, and then calculating adherence for the condition on the available information.

Patent Agency Ranking