Abstract:
A computing device determines an SVDD to identify an outlier in a dataset. First and second sets of observation vectors of a predefined sample size are randomly selected from a training dataset. First and second optimal values are computed using the first and second observation vectors to define a first set of support vectors and a second set of support vectors. A third optimal value is computed using the first set of support vectors updated to include the second set of support vectors to define a third set of support vectors. Whether or not a stop condition is satisfied is determined by comparing a computed value to a stop criterion. When the stop condition is not satisfied, the first set of support vectors is defined as the third set of support vectors, and operations are repeated until the stop condition is satisfied. The third set of support vectors is output.
Abstract:
A computing device determines an SVDD to identify an outlier in a dataset. First and second sets of observation vectors of a predefined sample size are randomly selected from a training dataset. First and second optimal values are computed using the first and second observation vectors to define a first set of support vectors and a second set of support vectors. A third optimal value is computed using the first set of support vectors updated to include the second set of support vectors to define a third set of support vectors. Whether or not a stop condition is satisfied is determined by comparing a computed value to a stop criterion. When the stop condition is not satisfied, the first set of support vectors is defined as the third set of support vectors, and operations are repeated until the stop condition is satisfied. The third set of support vectors is output.
Abstract:
A computer-readable medium is configured to determine a support vector data description (SVDD). For each of a plurality of values for a kernel parameter, an optimal value of an objective function defined for an SVDD model using a kernel function, a read plurality of data points, and a respective value for the kernel parameter is computed to define a plurality of sets of support vectors. A plurality of first derivative values are computed for the objective function as a difference between the computed optimal values associated with successive values for the kernel parameter. A plurality of second derivative values are computed for the objective function as a difference between the computed plurality of first derivative values associated with successive values for the kernel parameter. A kernel parameter value is selected where the computed plurality of second derivative values first exceeds zero.