Abstract:
An analytical method for computing a video hologram for a holographic reproduction device having at least one light modulation means is disclosed, wherein a scene split into object points is encoded as a whole hologram and can be seen as a reconstruction from a visibility region, located within a periodicity interval of the reconstruction. The visibility region, together with each object point of the scene to be reconstructed, defines a subhologram and the whole hologram is generated from a superposition of subholograms, wherein the complex hologram values of a subhologram are determined from the wave front of the respective object point to be reconstructed in a modulator region of the light modulation means, by calculating and evaluating the transmission or modulation functions of an imaging element formed in the modulator region. The object point to be reconstructed is located in the focal point of the imaging element.
Abstract:
Disclosed is a holographic display including a spatial light modulator (SLM) with pixels, the SLM pixels being on a substrate, the SLM including circuitry which is on the same substrate as the SLM pixels, the circuitry operable to perform calculations which provide an encoding of the SLM.
Abstract:
A method for generating video holograms in real time for a holographic playback device comprising at least one light modulator means, into which a scene divided into object points is encoded as an entire hologram and can be seen as a reconstruction from a visibility region, which is located within a periodicity interval of the reconstruction of the video hologram, the visibility region defining a subhologram together with each object point of the scene to be reconstructed, and the entire hologram being generated from a superposition of contributions of subholograms, is characterized in that for each object point the contributions of the subholograms in the entire reconstruction of the scene can be determined from at least one look-up table.
Abstract:
A method for generating video holograms in real time for a holographic playback device comprising at least one light modulator means, into which a scene divided into object points is encoded as an entire hologram and can be seen as a reconstruction from a visibility region, which is located within a periodicity interval of the reconstruction of the video hologram, the visibility region defining a subhologram together with each object point of the scene to be reconstructed, and the entire hologram being generated from a superposition of contributions of subholograms, is characterized in that for each object point the contributions of the subholograms in the entire reconstruction of the scene can be determined from at least one look-up table.
Abstract:
Disclosed is a holographic display including a spatial light modulator (SLM) with pixels, the SLM pixels being on a substrate, the SLM including circuitry which is on the same substrate as the SLM pixels, the circuitry operable to perform calculations which provide an encoding of the SLM.
Abstract:
A method for generating video holograms in real time for a holographic playback device comprising at least one light modulator means, into which a scene divided into object points is encoded as an entire hologram and can be seen as a reconstruction from a visibility region, which is located within a periodicity interval of the reconstruction of the video hologram, the visibility region defining a subhologram together with each object point of the scene to be reconstructed, and the entire hologram being generated from a superposition of contributions of subholograms, is characterized in that for each object point the contributions of the subholograms in the entire reconstruction of the scene can be determined from at least one look-up table.
Abstract:
A holographic display device for computing a video hologram of a scene is disclosed. The scene comprises a multitude of object points. The holographic display device comprises at least one light modulator means. Said holographic display device is configured to perform the steps of (a) defining a visibility region within a periodicity interval of the video hologram of the scene to be reconstructed; (b) for each object point, defining a modulator region by the defined visibility region together with each object point of the scene to be reconstructed, where a sub-hologram of an object point of the scene to be reconstructed is computed for each modulator region, and where an entire video hologram is created by superposition of said sub-holograms; (c) determining complex hologram values of a sub-hologram in a modulator region from a wave front of an object point to be reconstructed by computing modulation functions of an imaging element which is modeled in the respective modulator region of said holographic display device, and in whose focal point the object point to be reconstructed lies, where the sub-hologram of said object point is computed using the modulation functions, and (d) encoding the video hologram of the scene into the screen means.