Abstract:
A first light-emitting element and a second light-emitting element that have a resonance structure that causes output light from a light-emission functional layer to resonate between a reflective layer and a semi-transmissive reflective layer, and a pixel definition layer, and in which an aperture part is formed to correspond to each of the first light-emitting element and the second light-emitting element, are formed on a base. A first interval between the reflective layer and the semi-transmissive reflective layer in the first light-emitting element and a second interval between the reflective layer and the semi-transmissive reflective layer in the second light-emitting element are different, and a film thickness of the pixel definition layer is less than a difference between the first interval and the second interval.
Abstract:
An optical device combines light emitted from first and second display panels. The first display panel emits first color light from a plurality of pixels. The second display panel emits second color light having a different wavelength range from the first color light from a plurality of pixels and emits third color light having a different wavelength range from the second color light from a plurality of pixels.
Abstract:
A first light-emitting element and a second light-emitting element that have a resonance structure that causes output light from a light-emission functional layer to resonate between a reflective layer and a semi-transmissive reflective layer, and a pixel definition layer, and in which an aperture part is formed to correspond to each of the first light-emitting element and the second light-emitting element, are formed on a base. A first interval between the reflective layer and the semi-transmissive reflective layer in the first light-emitting element and a second interval between the reflective layer and the semi-transmissive reflective layer in the second light-emitting element are different, and a film thickness of the pixel definition layer is less than a difference between the first interval and the second interval.
Abstract:
An image display device of the present disclosure includes an image light generating device, a first, a second, a third, and a fourth optical unit. A first intermediate image is formed between the first and the third optical unit. A pupil is formed between the second and the fourth optical unit. A second intermediate image is formed between the third and the fourth optical unit. An exit pupil is formed at an opposite side of the fourth optical unit from the third optical unit. The image light generating device includes a first, a second, a third light emitting panel, and a color synthesis element. The color synthesis element is constituted of a cross dichroic prism including a first and a second dichroic film that intersect with each other. Each of the first and the second dichroic film does not have a polarization separation characteristic.
Abstract:
A first light-emitting element and a second light-emitting element that have a resonance structure that causes output light from a light-emission functional layer to resonate between a reflective layer and a semi-transmissive reflective layer, and a pixel definition layer, and in which an aperture part is formed to correspond to each of the first light-emitting element and the second light-emitting element, are formed on a base. A first interval between the reflective layer and the semi-transmissive reflective layer in the first light-emitting element and a second interval between the reflective layer and the semi-transmissive reflective layer in the second light-emitting element are different, and a film thickness of the pixel definition layer is less than a difference between the first interval and the second interval.
Abstract:
A first light-emitting element and a second light-emitting element that have a resonance structure that causes output light from a light-emission functional layer to resonate between a reflective layer and a semi-transmissive reflective layer, and a pixel definition layer, and in which an aperture part is formed to correspond to each of the first light-emitting element and the second light-emitting element, are formed on a base. A first interval between the reflective layer and the semi-transmissive reflective layer in the first light-emitting element and a second interval between the reflective layer and the semi-transmissive reflective layer in the second light-emitting element are different, and a film thickness of the pixel definition layer is less than a difference between the first interval and the second interval.
Abstract:
A first light-emitting element and a second light-emitting element that have a resonance structure that causes output light from a light-emission functional layer to resonate between a reflective layer and a semi-transmissive reflective layer, and a pixel definition layer, and in which an aperture part is formed to correspond to each of the first light-emitting element and the second light-emitting element, are formed on a base. A first interval between the reflective layer and the semi-transmissive reflective layer in the first light-emitting element and a second interval between the reflective layer and the semi-transmissive reflective layer in the second light-emitting element are different, and a film thickness of the pixel definition layer is less than a difference between the first interval and the second interval.
Abstract:
Disclosed herein is a light-emitting element, including: a cathode; an anode; and a light-emitting unit, in which the light-emitting unit includes a first light-emitting layer, an intermediate layer, a second light-emitting layer, and a third light-emitting layer, which are laminated from the anode side to the cathode side, in which each of the second and third light-emitting layers is configured to contain a luminescent material, a host material, and an assist dopant material, in which the intermediate layer is configured to contain the host material and the assist dopant material, and in which, when the concentrations of the assist dopant materials contained in the second light-emitting layer, the third light-emitting layer, and the intermediate layer are respectively expressed by CAssist(EML2), CAssist(EML3), and CAssist(IML), the following Relational Expression (A) is satisfied: CAssist(IML)>CAssist(EML2)≧CAssist(EML3) (A).
Abstract:
Disclosed herein is a light-emitting element, including: a cathode; an anode; and a light-emitting unit, in which the light-emitting unit includes a first light-emitting layer, a second light-emitting layer, and a third light-emitting layer, which are laminated from the anode side to the cathode side, in which each of the first, second, and third light-emitting layers is configured to contain a luminescent material, a host material, and an assist dopant material, and in which, when the contents of the assist dopant materials contained in the first, second, and third light-emitting layers are respectively expressed by CAssist(EML1), CAssist(EML2) and CAssist(EML3), the following Relational Expression (A) is satisfied: CAssist(EML1)≧CAssist(EML2)>CAssist(EML3)≧0 (A).
Abstract:
A head-mounted display apparatus includes a cross dichroic prism including four triangular prisms that are mutually bonded, and a first dichroic film and a second dichroic film provided between adjacent prisms of the four triangular prisms, a plurality of display panels arranged respectively opposite to a plurality of light incident planes of the cross dichroic prism, and a projection optical system configured to project light emitted from the cross dichroic prism onto a pupil of a user. The cross dichroic prism includes an optically imperfect part at a center of a bonded part of the four triangular prisms. A ratio between an aerial conversion length from each of light-emission planes of the plurality of display panels to the center of the bonded part, and a width of the optically imperfect part, is greater than or equal to 250:1.