Abstract:
A light-emitting device, a lighting device, a display device, or the like in which the state of a back surface side can be observed when light is not emitted is provided. The light-emitting device includes a plurality of light-emitting portions and a region transmitting visible light in a region other than the light-emitting portions. Alternatively, the light-emitting device includes a plurality of light-transmitting portions transmitting visible light and a light-emitting portion that can emit light in a region other than the light-transmitting portions. When light is not emitted, the state of a back surface side of the light-emitting device is visible through the region transmitting visible light. When light is emitted, the state of the back surface side of the light-emitting device can be made less visible by diffusion of light emitted from the light-emitting portion.
Abstract:
A display device, an electronic device, or a lighting device that is unlikely to be broken is provided. A flexible first substrate and a flexible second substrate overlap with each other with a display element provided therebetween. A flexible third substrate is bonded on the outer surface of the first substrate, and a flexible fourth substrate is bonded on the outer surface of the second substrate. The third substrate is formed using a material softer than the first substrate, and the fourth substrate is formed using a material softer than the second substrate.
Abstract:
A display apparatus includes a first pixel, a second pixel, a third pixel, and a fourth pixel. The first pixel includes a first light-emitting device and a first layer. The first light-emitting device emits first light toward the first layer. An emission spectrum of the first light has an intensity in a blue-light wavelength range and an intensity in a green-light wavelength range. The first light contains a color conversion material converting blue and green light into red light. The second pixel includes a second light-emitting device and a second layer. The second light-emitting device emits second light toward the second layer. The second layer has a function of transmitting blue light. The third pixel includes a third light-emitting device and a third layer. The third light-emitting device emits third light toward the third layer. The third layer has a function of absorbing blue light and transmitting green light. The fourth pixel includes a fourth light-emitting device and a fourth layer. The fourth light-emitting device emits fourth light toward the fourth layer. The first to fourth light-emitting device provide the same emission spectrum as each other.
Abstract:
An object of one embodiment of the present invention is to provide a multicolor light-emitting element that utilizes fluorescence and phosphorescence and is advantageous for practical application. The light-emitting element has a stacked-layer structure of a first light-emitting layer containing a host material and a fluorescent substance, a separation layer containing a substance having a hole-transport property and a substance having an electron-transport property, and a second light-emitting layer containing two kinds of organic compounds that form an exciplex and a substance that can convert triplet excitation energy into luminescence. Note that a light-emitting element in which light emitted from the first light-emitting layer has an emission spectrum peak on the shorter wavelength side than an emission spectrum peak of the second light-emitting layer is more effective.
Abstract:
An object of one embodiment of the present invention is to provide a multicolor light-emitting element that utilizes fluorescence and phosphorescence and is advantageous for practical application. The light-emitting element has a stacked-layer structure of a first light-emitting layer containing a host material and a fluorescent substance, a separation layer containing a substance having a hole-transport property and a substance having an electron-transport property, and a second light-emitting layer containing two kinds of organic compounds that form an exciplex and a substance that can convert triplet excitation energy into luminescence. Note that a light-emitting element in which light emitted from the first light-emitting layer has an emission spectrum peak on the shorter wavelength side than an emission spectrum peak of the second light-emitting layer is more effective.
Abstract:
A light-emitting element includes a stack of a first light-emitting layer emitting fluorescent light and a second light-emitting layer emitting phosphorescent light between a pair of electrodes. The second light-emitting layer includes a first layer in which an exciplex is formed, a second layer in which an exciplex is formed, and a third layer in which an exciplex is formed. The second layer is located over the first layer, and the third layer is located over the second layer. An emission peak wavelength of the second layer is longer than an emission peak wavelength of the first layer and an emission peak wavelength of the third layer.
Abstract:
A display device, an electronic device, or a lighting device that is unlikely to be broken is provided. A flexible first substrate and a flexible second substrate overlap with each other with a display element provided therebetween. A flexible third substrate is bonded on the outer surface of the first substrate, and a flexible fourth substrate is bonded on the outer surface of the second substrate. The third substrate is formed using a material softer than the first substrate, and the fourth substrate is formed using a material softer than the second substrate.
Abstract:
A solid-state light-emitting element includes a structure body having a property of transmitting visible light and an uneven structure on each of the top side and the bottom side thereof; a high refractive index material layer provided on one surface of the structure body; and a light-emitting body with a refractive index of greater than or equal to 1.6 provided over the high refractive index material layer. One surface of the high refractive index material layer is flatter than the other surface thereof which is in contact with the structure body. The refractive index of the high refractive index material layer is greater than or equal to 1.6. The refractive index of the structure body is greater than 1.0 and less than that of the high refractive index material layer.
Abstract:
An object of one embodiment of the present invention is to provide a multicolor light-emitting element that utilizes fluorescence and phosphorescence and is advantageous for practical application. The light-emitting element has a stacked-layer structure of a first light-emitting layer containing a host material and a fluorescent substance, a separation layer containing a substance having a hole-transport property and a substance having an electron-transport property, and a second light-emitting layer containing two kinds of organic compounds that form an exciplex and a substance that can convert triplet excitation energy into luminescence. Note that a light-emitting element in which light emitted from the first light-emitting layer has an emission spectrum peak on the shorter wavelength side than an emission spectrum peak of the second light-emitting layer is more effective.
Abstract:
A semiconductor device with a small variation in characteristics is provided. The semiconductor device includes a first insulator, a transistor over the first insulator, a second insulator over the transistor, a third insulator over the second insulator, a fourth insulator over the third insulator, and an opening region. The opening region includes the second insulator, the third insulator over the second insulator, and the fourth insulator over the third insulator. The third insulator includes an opening reaching the second insulator. The fourth insulator is in contact with a top surface of the second insulator inside the opening.