Abstract:
High octane unleaded aviation fuel compositions having a CHN content of at least 97.2 wt %, less than 2.8 wt % of oxygen content, a T10 of at most 75° C., T40 of at least 75° C., a T50 of at most 105° C., a T90 of at most 135° C., a final boiling point of less than 210° C., an adjusted heat of combustion of at least 43.5 MJ/kg, a vapor pressure in the range of 38 to 49 kPa is provided.
Abstract:
High octane unleaded aviation gasoline having low aromatics content and a T10 of at most 75° C., T40 of at least 75° C., a T50 of at most 105° C., a T90 of at most 135° C., a final boiling point of less than 190° C., an adjusted heat of combustion of at least 43.5 MJ/kg, a vapor pressure in the range of 38 to 49 kPa and a freezing point of less than −58° C. is provided.
Abstract:
An unleaded aviation fuel composition meets the requirements of the ASTM D910 specification. Furthermore, the unleaded aviation fuel compositions of the present invention exhibit reduced bladder delamination, improved materials compatibility such as reduced elastomer swelling and reduced paint staining, and improved engine endurance.
Abstract:
A tester, systems and method for testing hydrocarbons are provided. The tester includes a test module supporting the component thereabout. The test module is operatively connectable to a fluid source to receive the hydrocarbon therefrom. A recirculation circuit is operatively connectable to the fluid circuit about the test module to recirculate the hydrocarbon thereabout whereby the hydrocarbon is passed over at least a portion of the component. The method involves passing the hydrocarbon over at least a portion of a plurality of the components, recirculating the hydrocarbon over the portion of each of the components, and performing a material test on each of the components.
Abstract:
High octane unleaded aviation fuel compositions having high aromatics content and a CHN content of at least 98 wt %, less than 2 wt % of oxygen content, an adjusted heat of combustion of at least 43.5 MJ/kg, a vapor pressure in the range of 38 to 49 kPa, freezing point is less than −58° C. is provided.
Abstract:
High octane unleaded aviation fuel composition having high aromatics content and CHN content of at least 97.8 wt %, less than 2.2 wt % of oxygen content, a T10 of at most 75° C., T40 of at least 75° C., a T50 of at most 105° C., a T90 of at most 135° C., a final boiling point of less than 190° C., an adjusted heat of combustion of at least 43.5 MJ/kg, a vapor pressure in the range of 38 to 49 kPa is provided.
Abstract:
An unleaded aviation fuel composition with improved octane properties has 20-35 vol. % toluene having a MON of at least 107; 2-10 vol. % aniline; from above 30 to 55 vol % of at least one alkylate or alkylate blend comprising isoparaffins 4-9 carbon atoms, 3-20 vol % C5 isoparaffins, 3-15 vol % C7 isoparaffins, and 60-90 vol % C8 isoparaffins, and less than 1 vol % C10+, based on the alkylate or alkylate blend; at least 8 vol % isopentane, 0.1-10 vol %, straight chain alkyl acetate; and 0.1-10 vol % branched chain alcohol having 4-8 carbon atoms, provided that the branched chain does not contain any t-butyl groups. The volume ratio of straight chain alkyl acetate to branched chain alcohol is in the range of 3:1 to 1:3 and the fuel composition contains less than 1 vol % of C8 aromatics.
Abstract:
High octane unleaded aviation fuel compositions having high aromatics content and CHN content of at least 98 wt %, less than 2 wt % of oxygen content, an adjusted heat of combustion of at least 43.5 MJ/kg, a vapor pressure in the range of 38 to 49 kPa is provided.
Abstract:
High octane unleaded aviation fuel compositions having high aromatics content and a CHN content of at least 97.2 wt %, less than 2.8 wt % of oxygen content, a T10 of at most 75° C., T40 of at least 75° C., a T50 of at most 105° C., a T90 of at most 135° C., a final boiling point of less than 190° C., an adjusted heat of combustion of at least 43.5 MJ/kg, a vapor pressure in the range of 38 to 49 kPa, freezing point is less than −58° C. is provided.