Abstract:
A magnetic recording medium includes a substrate; a soft magnetic underlayer laminated on the substrate; an amorphous barrier layer laminated on the soft magnetic underlayer; and a magnetic recording layer laminated on the amorphous barrier layer, wherein the soft magnetic underlayer includes Fe, B, Si, and one or more elements selected from the group consisting of Nb, Zr, Mo, and Ta, wherein the amorphous barrier layer includes Si, W, and one or more elements selected from the group consisting of Nb, Zr, Mo, and Ta, and wherein the magnetic recording layer includes an alloy having an L10 structure.
Abstract:
A magnetic recording medium includes: a substrate; an underlayer; a magnetic layer including an alloy having an L10 type crystal structure; and a protective layer, wherein the substrate, the underlayer, the magnetic layer, and the protective layer are stacked in the recited order. A pinning layer is further included between the magnetic layer and the protective layer, and the pinning layer includes a magnetic material including Co and includes at least one metal selected from the group consisting of Cu, Ag, Au, and Al.
Abstract:
A magnetic recording medium includes: a substrate; an underlayer; and a magnetic layer including an alloy having a L10 type crystal structure whose plane orientation is (001). The substrate, the underlayer, and the magnetic layer are stacked in this order. The underlayer includes a first underlayer. The first underlayer is a crystalline layer that includes a material containing Al, Ag, Cu, W, or Mo as a main component element and includes an oxide of the main component element, a content of the oxide of the main component element in the first underlayer being in a range of from 2 mol % to 30 mol %.
Abstract:
A magnetic recording medium includes a substrate, an underlayer provided on the substrate and including MgO, and a magnetic layer provided on the underlayer and including an alloy having a L10 crystal structure. The magnetic layer includes first, second, and third magnetic recording layers successively provided in this order above the underlayer. A Curie temperature of the second magnetic recording layer is lower than a Curie temperature of each of the first and third magnetic recording layers, by a value which falls within a range of 30 K to 100 K. An average grain diameter of magnetic grains at a bottom surface portion of the first magnetic recording layer is smaller by 15% or more than average grain diameters of magnetic grains at bottom surface portions of the second and third magnetic recording layers.
Abstract:
A heat-assisted magnetic recording medium includes a substrate, an underlayer, and a magnetic layer including an alloy having a L10 crystal structure and first and second layers, arranged in this order. Each of the first and second layers has a granular structure including C, SiO2, and BN at grain boundaries. Vol % of the grain boundaries in each of the first and second layers is 25 to 45 vol %. Vol % of C in the first layer is 5 to 22 vol %, and a volume ratio of SiO2 with respect to BN in each of the first and second layers is 0.25 to 3.5. Vol % of SiO2 in the second layer is greater than that of the first layer by 5 vol % or more. Vol % of BN in the second layer is smaller than that in the first layer by 2 vol % or more.
Abstract:
A heat-assisted magnetic recording medium includes: a substrate; an underlayer; and a magnetic layer that is (001)-oriented. In the magnetic layer, a first magnetic layer and a second magnetic layer are stacked in this order from the underlayer side. The first magnetic layer and the second magnetic layer include an alloy having an L10 structure. The second magnetic layer includes a ferrite at grain boundaries of magnetic grains. The ferrite is one or more kinds selected from the group consisting of NiFe2O4, MgFe2O4, MnFe2O4, CuFe2O4, ZnFe2O3, CoFe2O4, BaFe2O4, SrFe2O4, and Fe3O4. A Curie temperature of the magnetic grains is lower than a Curie temperature of the ferrite.
Abstract:
A magnetic recording medium includes a substrate, an underlayer provided on the substrate, and a magnetic layer provided on the underlayer and having a L10 structure and a (001) orientation. The magnetic layer has a granular structure in which an organic compound having a methylene skeleton or a methine skeleton is arranged at grain boundaries of magnetic grains.
Abstract:
The heat-assisted magnetic recording medium of the present invention has a substrate, an under layer formed on the substrate, and a magnetic layer formed on the under layer, in which the magnetic layer includes an alloy having a L10 structure as a principle component, and the under layer is constituted by a first under layer made of an amorphous alloy or an alloy having a microcrystalline structure, a second under layer made of Cr or an alloy which contains Cr as a principle component and has a BCC structure, a third under layer made of a metal or an alloy having a BCC structure with a lattice constant of 2.98 Å or more, and a fourth under layer made of MgO.
Abstract:
A magnetic recording medium includes a magnesium oxide underlayer including magnesium oxide, and a magnetic layer including an alloy having a L10 structure and includes Fe or Co and Pt. The magnesium oxide has a peak of an O1s spectrum detected in a range of 531 eV to 533 eV when measured by X-ray photoelectron spectroscopy.
Abstract:
A magnetic recording medium includes a substrate, an underlayer provided above the substrate, and a magnetic layer provided on and in contact with the underlayer. The underlayer includes a compound represented by a general formula MgO(1-x), where x falls within a range of 0.07 to 0.25. The magnetic layer includes an alloy having a L10 structure, and the alloy having the L10 structure includes one or more elements selected from a group consisting of Al, Si, Ga, and Ge.