Abstract:
There are provided a head chip, a liquid jet head, a liquid jet recording device, and a method of manufacturing the head chip each capable of preventing the short circuit of electrodes by ink to maintain an excellent ejection performance over a long period of time. The head chip according to an aspect of the present disclosure includes an actuator plate, a cover plate, and an intermediate plate. In the actuator plate, open apertures which communicate an inside and an outside of a non-ejection channel with each other are formed in both end portions of the non-ejection channel in a Y direction. In the actuator plate, open apertures which communicate an inside and an outside of a non-ejection channel with each other are formed in both end portions of the non-ejection channel in the Y direction.
Abstract:
A liquid jet head includes a first piezoelectric body substrate and an opaque substrate. The first piezoelectric body substrate includes n pieces of ejection grooves arrayed with an identical pitch in a reference direction on a surface, and (n+1) pieces of non-ejection grooves arrayed alternately with the ejection grooves while shifted therefrom by a half pitch. The opaque substrate is bonded to the surface of the first piezoelectric body substrate and includes (j+n+k) pieces of through holes passing through the plate in the board thickness direction and arrayed in the reference direction. Each of n pieces of through holes communicates with each of the n pieces of the ejection grooves, while j and k pieces of through holes do not communicate with the ejection grooves.
Abstract:
A liquid jet head includes a base plate, an actuator plate fixed to the base plate, a drive electrode formed on each of inner surfaces of an ejection channel and a dummy channel in the actuator plate, and an extracting electrode formed on the base plate to be located on a rear side of the actuator plate and electrically connected to the drive electrode, in which an electrode formation region to form the extracting electrode has a surface roughness greater than that of a region other than the electrode formation region, in the base plate.
Abstract:
A liquid jet head is provided with an actuator substrate partitioned by elongated walls of a piezoelectric body and having elongated ejection grooves and elongated non-ejection grooves alternately arrayed thereon so as to penetrate the actuator substrate from an upper surface through a lower surface thereof; a cover plate provided on the upper surface and having first slits communicating with the ejection grooves on one side and second slits communicating with the ejection grooves on the other side; and a nozzle plate provided on the lower surface and having nozzles communicating with the ejection grooves. The non-ejection grooves extend, on the other side, up to a second-side peripheral end of the actuator substrate, and the actuator substrate is left to form raised bottom portions on bottoms of the non-ejection grooves near the second-side peripheral end.
Abstract:
A liquid jet head includes base plates, a first actuator plate and a second actuator plate separately arranged on one principal planes of the base plates, and configured to jet a liquid, first extracting electrodes electrically connected to first drive electrodes, on the one principal plane of the first base plate, and second extracting electrodes electrically connected to second drive electrodes, on the one principal plane of the second base plate. The second extracting electrodes are pulled out on the one principal plane through through holes formed in the base plates.
Abstract:
A liquid jet head is provided with an actuator substrate which is partitioned by elongated walls of piezoelectric body and has elongated grooves arrayed thereon so as to penetrate the substrate from an upper surface through a lower surface thereof, a cover plate which is attached to the substrate so as to cover upper surface openings of the grooves and has a liquid supply chamber which supplies liquid to the grooves, and a nozzle plate which is attached to the substrate so as to cover lower surface openings of the grooves and has nozzles communicating with the respective grooves. Drive electrodes are formed in strip form on side surfaces of the walls along the longitudinal direction thereof so as to be separated from the nozzle plate. The nozzle plate has a lower stiffness than the cover plate.
Abstract:
The head chip includes an actuator plate having ejection channels and non-ejection channels extending in a Y direction and arranged alternately in an X direction, an intermediate plate overlapped with the actuator plate in a Z direction, and provided with communication holes communicated with the ejection channels and through holes communicated with the non-ejection channels, and a nozzle plate overlapped with the intermediate plate in the Z direction in a state of closing the through holes, and provided with nozzle holes which are communicated with the communication holes, jet liquid contained in the ejection channels, and are formed at positions corresponding to the ejection channels. The non-ejection channels are communicated with an outside of the head chip. The through holes are each disposed at an inner side in the X direction of the inner surfaces extending in the Y direction of the non-ejection channel viewed from the Z direction.
Abstract:
A liquid jet head includes ejection channels and dummy channels alternately arrayed across partitions to configure a channel row, and drive electrodes that are side surfaces of the partitions and are positioned from upper ends of the partitions in a depth direction, and an average depth of two drive electrodes positioned on facing side surfaces of the ejection channel is different from an average depth of two drive electrodes positioned on facing side surfaces of the dummy channel adjacent to the ejection channel.
Abstract:
A method of manufacturing a head chip includes a groove forming step for forming grooves which are the bases of ejection grooves on a first surface of the actuator substrate, a substrate grinding step for grinding a second surface of the actuator substrate so that each of the grooves has a predetermined depth, a recessed portion forming step for forming an inspection recessed portion which changes its state in the second surface of the actuator substrate according to the grinding amount of the actuator substrate in the substrate grinding step, and a grinding amount determination step for determining the grinding amount of the actuator substrate on the basis of a state of the inspection recessed portion after the substrate grinding step.
Abstract:
A liquid jet head 1 including: an actuator substrate 2 having a plurality of elongated grooves 6 arrayed from an upper surface to a lower surface thereof. The grooves are formed from a vicinity of a peripheral end on one side of the actuator substrate to a peripheral end the other side thereof, ends of the grooves in a longitudinal direction thereof have respective inclined surfaces 22 rising from the lower surface to the upper surface of the actuator substrate, and a crossing angle at crossing portions at which the inclined surfaces and the lower surface cross each other is in a range of 3 degrees to 80 degrees.