Abstract:
An integrated circuit chip is formed with an active layer and a trap rich layer. The active layer is formed with an active device layer and a metal interconnect layer. The trap rich layer is formed above the active layer. In some embodiments, the active layer is included in a semiconductor wafer, and the trap rich layer is included in a handle wafer.
Abstract:
Embodiments of the present invention provide for the enhancement of transistors in a semiconductor structure using a strain layer. The structure comprises a patterned layer consisting of an excavated region and a pattern region, a strain layer located in the excavated region and on the pattern region, an active layer located above the strain layer, a field effect transistor formed in the active layer, and a handle layer located above the active layer. The field effect transistor comprises a source, a drain, and a channel. The channel lies completely within a lateral extent of the pattern region. The source and the drain each lie only partially within the lateral extent of the pattern region. The strain layer alters a carrier mobility of the channel. In some embodiments, the strain layer is introduced to the back side of a semiconductor-on-insulator structure.
Abstract:
A vertical semiconductor device is formed in a semiconductor layer having a first surface, a second surface and background doping. A first doped region, doped to a conductivity type opposite that of the background, is formed at the second surface of the semiconductor layer. A second doped region of the same conductivity type as the background is formed at the second surface of the semiconductor layer, inside the first doped region. A portion of the semiconductor layer is removed at the first surface, exposing a new third surface. A third doped region is formed inside the semiconductor layer at the third surface. Electrical contact is made at least to the second doped region (via the second surface) and the third doped region (via the new third surface). In this way, vertical DMOS, IGBT, bipolar transistors, thyristors, and other types of devices can be fabricated in thinned semiconductor, or SOI layers.
Abstract:
In one embodiment, an integrated circuit with a signal-processing region is disclosed. The integrated circuit comprises a silicon-on-insulator die singulated from a silicon-on-insulator wafer. The silicon on insulator die comprises an active layer, an insulator layer, a substrate, and a strengthening layer. The substrate consists of an excavated substrate region, and a support region, the support region is in contact with the insulator layer. The excavated region covers a majority of the signal-processing region of the integrated circuit.
Abstract:
An integrated circuit assembly is formed with an insulating layer, a semiconductor layer, an active device, first, second, and third electrically conductive interconnect layers, and a plurality of electrically conductive vias. The insulating layer has a first surface and a second surface. The second surface is below the first surface. A substrate layer has been removed from the second surface. The semiconductor layer has a first surface and a second surface. The first surface of the semiconductor layer contacts the first surface of the insulating layer. The active device is formed in a region of the semiconductor layer. The first electrically conductive interconnect layer forms an electrically conductive ring. The second electrically conductive interconnect layer forms a first electrically conductive plate above the electrically conductive ring and the region of the semiconductor layer. The third electrically conductive interconnect layer forms a second electrically conductive plate below the electrically conductive ring and the region of the semiconductor layer. The plurality of electrically conductive vias electrically couple the electrically conductive ring to the first electrically conductive plate and to the second electrically conductive plate. The electrically conductive ring, the first electrically conductive plate, the second electrically conductive plate, and the plurality of electrically conductive vias form a Faraday cage around the active device.
Abstract:
Various methods and devices that involve EMI shields for radio frequency layer transferred devices are disclosed. One method comprises forming a radio frequency field effect transistor in an active layer of a semiconductor on insulator wafer. The semiconductor on insulator wafer has a buried insulator side and an active layer side. The method further comprises bonding a second wafer to the active layer side of the semiconductor on insulator wafer. The method further comprises forming a shield layer for the semiconductor device. The shield layer comprises an electrically conductive material. The method further comprises coupling the radio frequency field effect transistor to a circuit comprising a radio frequency component. The method further comprises singulating the radio frequency field effect transistor, radio frequency component, and the shield layer into a die. The shield layer is located between a substrate of the radio frequency component and the radio frequency field effect transistor.
Abstract:
An integrated circuit assembly includes an insulating layer having a having a first surface and a second surface. A first active layer contacts the first surface of the insulating layer. A metal bond pad is electrically connected to the first active layer and formed on the second surface of the insulating layer. A substrate having a first surface and a second surface, with a second active layer formed in the first surface, is provided such that the first active layer is coupled to the second surface of the substrate.
Abstract:
An integrated circuit assembly includes an insulating layer having a having a first surface and a second surface, where the first surface of the insulating layer is less than 10 microns below an upper plane of the integrated circuit assembly. An active layer contacts the first surface of the insulating layer. A metal bond pad is electrically connected to the active layer and formed on the second surface of the insulating layer, and is also electrically connected to a printed circuit board. A method of fabricating an integrated circuit assembly includes coupling a handle wafer to the active layer of a semiconductor-on-insulator wafer, removing the substrate of the semiconductor-on-insulator, forming a bond pad connecting to the active layer on the exposed insulator surface, bonding the bond pad to a printed circuit board using a solder bump, and removing the handle wafer.
Abstract:
An integrated circuit assembly comprises an insulating layer, a semiconductor layer, a handle layer, a metal interconnect layer, and transistors. The insulating layer has a first surface, a second surface, and a hole extending from the first surface to the second surface. The semiconductor layer has a first surface and a second surface, the first surface of the semiconductor layer contacting the first surface of the insulating layer. The handle layer is coupled to the second surface of the semiconductor layer. The metal interconnect layer is coupled to the second surface of the insulating layer, the metal interconnect layer being disposed within the hole in the insulating layer. The transistors are located in the semiconductor layer. The hole in the insulating layer extends to at least the first surface of the semiconductor layer. The metal interconnect layer electrically couples a plurality of the transistors to each other.
Abstract:
A vertical semiconductor device is formed in a semiconductor layer having a first surface, a second surface and background doping. A first doped region, doped to a conductivity type opposite that of the background, is formed at the second surface of the semiconductor layer. A second doped region of the same conductivity type as the background is formed at the second surface of the semiconductor layer, inside the first doped region. A portion of the semiconductor layer is removed at the first surface, exposing a new third surface. A third doped region is formed inside the semiconductor layer at the third surface. Electrical contact is made at least to the second doped region (via the second surface) and the third doped region (via the new third surface). In this way, vertical DMOS, IGBT, bipolar transistors, thyristors, and other types of devices can be fabricated in thinned semiconductor, or SOI layers.