Abstract:
An inductor assembly includes at least one inductor coil, a metallic inductor housing at least partially enclosing the inductor coil, and a potting material both contacting the inductor coil and the metallic inductor housing and thermally coupling the inductor coil to the metallic inductor housing. The inductor coil includes a bobbin made of electrically insulating material, and an inductor winding made of an electric conductor wound on the bobbin. The inductor winding further has an outer circumference and two end faces, and an electric insulation covers the outer circumference of the inductor winding. Coil lids made of electrically insulating material at least partially cover the end faces of the inductor winding and adjacent areas of the electric insulation covering the outer circumference of the inductor winding such that a distance of any point of the end faces of the inductor winding to the metallic housing along any way not passing through the electrically insulating material of the coil lids or the bobbin is at least a required minimum creepage distance.
Abstract:
The disclosure relates to an integral inductor arrangement with at least three magnetic loops arranged side by side to each other in a row and at least one winding associated with each of the magnetic loops. The magnetic loops are formed by individual core elements, each of which being part of one of the magnetic loops, and shared core elements, each of which being part of two adjacent of the magnetic loops. The shared core elements are separated from the individual core elements by magnetic gaps and each of the at least one winding is arranged around one of the individual core elements. The disclosure further relates to a use of such integral inductor arrangement within a 3-phase AC-filter for a power inverter for feeding electrical power into a power grid.
Abstract:
A inductor arrangement has a toroidal core with a central opening, a winding which is arranged around the core and has two winding ends, and an electrically insulating insert which is inserted into the central opening in a clamping manner. Here, the winding ends are inserted into the insert in a clamping manner.
Abstract:
The disclosure relates to an integral inductor arrangement with at least three magnetic loops arranged side by side to each other in a row and at least one winding associated with each of the magnetic loops. The magnetic loops are formed by individual core elements, each of which being part of one of the magnetic loops, and shared core elements, each of which being part of two adjacent of the magnetic loops. The shared core elements are separated from the individual core elements by magnetic gaps and each of the at least one winding is arranged around one of the individual core elements. The disclosure further relates to a use of such integral inductor arrangement within a 3-phase AC-filter for a power inverter for feeding electrical power into a power grid.
Abstract:
A coil form with a low inter-winding capacitance is disclosed including a bobbin formed from an electrically insulating material and including a tube section shaped wall. A coil is mechanically supported by the bobbin and includes a first plurality of conductor windings on the outside of the wall and a second plurality of conductor windings on the inside of the wall. Furthermore, a transformer with such a coil form as any of its primary or secondary windings is disclosed.
Abstract:
The disclosure relates to an integral inductor arrangement with at least three magnetic loops arranged side by side to each other in a row and at least one winding associated with each of the magnetic loops. The magnetic loops are formed by individual core elements, each of which being part of one of the magnetic loops, and shared core elements, each of which being part of two adjacent of the magnetic loops. The shared core elements are separated from the individual core elements by magnetic gaps and each of the at least one winding is arranged around one of the individual core elements. The disclosure further relates to a use of such integral inductor arrangement within a 3-phase AC-filter for a power inverter for feeding electrical power into a power grid.
Abstract:
A inductor arrangement has a toroidal core with a central opening, a winding which is arranged around the core and has two winding ends, and an electrically insulating insert which is inserted into the central opening in a clamping manner. Here, the winding ends are inserted into the insert in a clamping manner.
Abstract:
A coil form with a low inter-winding capacitance is disclosed including a bobbin formed from an electrically insulating material and including a tube section shaped wall. A coil is mechanically supported by the bobbin and includes a first plurality of conductor windings on the outside of the wall and a second plurality of conductor windings on the inside of the wall. Furthermore, a transformer with such a coil form as any of its primary or secondary windings is disclosed.
Abstract:
An inductor assembly includes at least one inductor coil, a metallic inductor housing at least partially enclosing the inductor coil, and a potting material both contacting the inductor coil and the metallic inductor housing and thermally coupling the inductor coil to the metallic inductor housing. The inductor coil includes a bobbin made of electrically insulating material, and an inductor winding made of an electric conductor wound on the bobbin. The inductor winding further has an outer circumference and two end faces, and an electric insulation covers the outer circumference of the inductor winding. Coil lids made of electrically insulating material at least partially cover the end faces of the inductor winding and adjacent areas of the electric insulation covering the outer circumference of the inductor winding such that a distance of any point of the end faces of the inductor winding to the metallic housing along any way not passing through the electrically insulating material of the coil lids or the bobbin is at least a required minimum creepage distance.
Abstract:
The disclosure relates to an inductance device for mounting on a printed circuit board including a substantially flat tray and a choke, the choke being mounted on an upper side of the tray and including a core and at least two wound around the core. The wires of the at least two coils comprise end segments that extend through the tray and terminate on a lower side of the tray opposite to the upper side of the tray. The tray includes notches for guiding the end segments through the tray and latches for fixing the end segments of the wires within the notches. The disclosures further relates to an inverter including an inductance device.