Abstract:
Embodiments of the present disclosure are directed to systems, devices, and methods of inducing physical effects in tissue, such as dermis, adipose, musculoskeletal, vascular, hepatic tissue, using unfocused or planar, non-cavitating acoustic shock waves. The physical effects include disruption of fibrous extracellular matrix of the targeted tissues. Embodiments of the present disclosure include applying rapid acoustic pulses (e.g., shock waves) to cause a breakdown in the fibrous extracellular matrix to reduce the appearance of cellulite or scars in a treatment area. Such unfocused or planar, non-cavitating acoustic shock waves may induce a tissue reaction, such as reduction of fibrosis, induction of angiogenesis, or lymphangiogenesis.
Abstract:
Apparatuses and methods for electrohydraulic generation of shockwaves at a rate of between 10 Hz and 5 MHz, and/or that permit a user to view a region of a patient comprising target cells during application of generated shockwaves to the region. Methods of applying electro-hydraulically generated shockwaves to target tissues (e.g., for reducing the appearance of tattoos, treatment or reduction of certain conditions and/or maladies).
Abstract:
Apparatuses, capacitor arrays, and methods for generating therapeutic compressed acoustic waves (e.g., shock waves). In the apparatuses and at least some of the methods, a plurality of electrodes can disposed in a chamber that is defined by a housing and configured to be filled with liquid, and a plurality of capacitors can be electrically connected to the electrodes and can be carried by (e.g., physically coupled to) the housing. Voltage pulses can be applied simultaneously to the plurality of electrodes (e.g., to begin to vaporize and ionize portions of the liquid to provide at least one inter-electrode conductive path between the plurality of electrodes) and to the capacitors to charge the plurality of capacitors). The plurality of capacitors can be configured to, upon reaching a threshold charge, discharge to the plurality of electrodes (e.g., to generate one or more arcs along the one or more inter-electrode conductive paths to vaporize additional portions of the liquid and generate one or more acoustic shock waves). In the capacitor arrays, a plurality of capacitors can be coupled to the one or more circuit boards with a first portion of the capacitors arranged in a first pattern defined by a plurality of capacitor sets, a second portion of the plurality of capacitors can be arranged in a second pattern defined by a plurality of capacitor sets, with the sets defining the first pattern connected in parallel, the sets defining the second pattern connected in parallel, and the circuit board(s) can be configured to be coupled to an electrode such that the electrode is in electrical communication with the capacitors and is fixed in at least two degrees of freedom relative to the one or more circuit boards.
Abstract:
Apparatuses and methods for selectively providing laser induced optical breakdown (LIOB) of absorptive targets in biological media. For example, LIOB may be used as part of tissue therapy, such as cosmetic therapy associated with tattoo removal. In some implementation, a system for selectively providing LIOB includes a field generator configured to generate a field and to apply the field through a portion of a biological medium. The system also includes a light source configured to deliver laser light to the portion of the biological medium during application of the field. Application of the field to the biological medium induces movement of free electrons within the portion of the biological medium which may reduce or slow the formation of vacuoles in the biological medium responsive to the laser light.
Abstract:
Embodiments of the present disclosure are directed to methods of inducing therapeutic adipose tissue inflammation using high frequency pressure waves (e.g. high frequency shockwaves) wherein the inflammation results in a reduction in the volume of subcutaneous adipose tissue. Embodiments include applying electrohydraulic generated shockwaves at a rate of between 10 Hz and 100 Hz to reduce the appearance of cellulite or the volume of subcutaneous fat in a treatment area.
Abstract:
Apparatuses and methods for electrohydraulic generation of shockwaves at a rate of between 10 Hz and 5 MHz, and/or that permit a user to view a region of a patient comprising target cells during application of generated shockwaves to the region. Methods of applying electro-hydraulically generated shockwaves to target tissues (e.g., for reducing the appearance of tattoos, treatment or reduction of certain conditions and/or maladies).
Abstract:
Embodiments of the present disclosure are directed to systems, devices, and methods of inducing physical effects in tissue, such as dermis, adipose, musculoskeletal, vascular, hepatic tissue, using unfocused or planar, non-cavitating acoustic shock waves. The physical effects include disruption of fibrous extracellular matrix of the targeted tissues. Embodiments of the present disclosure include applying rapid acoustic pulses (e.g., shock waves) to cause a breakdown in the fibrous extracellular matrix to reduce the appearance of cellulite or scars in a treatment area. Such unfocused or planar, non-cavitating acoustic shock waves may induce a tissue reaction, such as reduction of fibrosis, induction of angiogenesis, or lymphangiogenesis.
Abstract:
Apparatuses, capacitor arrays, and methods for generating therapeutic compressed acoustic waves (e.g., shock waves). In the apparatuses and at least some of the methods, a plurality of electrodes can disposed in a chamber that is defined by a housing and configured to be filled with liquid, and a plurality of capacitors can be electrically connected to the electrodes and can be carried by (e.g., physically coupled to) the housing. Voltage pulses can be applied simultaneously to the plurality of electrodes (e.g., to begin to vaporize and ionize portions of the liquid to provide at least one inter-electrode conductive path between the plurality of electrodes) and to the capacitors to charge the plurality of capacitors). The plurality of capacitors can be configured to, upon reaching a threshold charge, discharge to the plurality of electrodes (e.g., to generate one or more arcs along the one or more inter−electrode conductive paths to vaporize additional portions of the liquid and generate one or more acoustic shock waves). In the capacitor arrays, a plurality of capacitors can be coupled to the one or more circuit boards with a first portion of the capacitors arranged in a first pattern defined by a plurality of capacitor sets, a second portion of the plurality of capacitors can be arranged in a second pattern defined by a plurality of capacitor sets, with the sets defining the first pattern connected in parallel, the sets defining the second pattern connected in parallel, and the circuit board(s) can be configured to be coupled to an electrode such that the electrode is in electrical communication with the capacitors and is fixed in at least two degrees of freedom relative to the one or more circuit boards.
Abstract:
Apparatuses and methods for electrohydraulic generation of Shockwaves at a rate of between 10 Hz and 5 MHz, and/or that permit a user to view a region of a patient comprising target cells during application of generated Shockwaves to the region. Methods of applying electro-hydraulically generated Shockwaves to target tissues (e.g., for reducing the appearance of tattoos, treatment or reduction of certain conditions and/or maladies).