Abstract:
An imaging system for capturing light over a wide dynamic range and method for operating the same are provided. In some aspects, the method includes positioning an imaging pixel to image a scene described by light signals that extend over a wide dynamic range, and selecting a different integration time for at least two photodiodes in the imaging pixel based on light signals received by the imaging pixel, wherein the photodiodes are coupled to a sense node, and each photodiode is controlled using a different transfer gate. The method also includes performing a readout of the imaging pixel using a readout circuit connected to the sense node, wherein a capacitance associated with the sense node is modified during the readout of the at least two photodiodes.
Abstract:
An imaging system for capturing light over a wide dynamic range and method for operating the same are provided. In some aspects, the method includes positioning an imaging pixel to image a scene described by light signals that extend over a wide dynamic range, and selecting a different integration time for at least two photodiodes in the imaging pixel based on light signals received by the imaging pixel, wherein the photodiodes are coupled to a sense node, and each photodiode is controlled using a different transfer gate. The method also includes performing a readout of the imaging pixel using a readout circuit connected to the sense node, wherein a capacitance associated with the sense node is modified during the readout of the at least two photodiodes.
Abstract:
An imager has an array of pixels arranged in rows and columns, readout circuitry electrically coupled to the columns to receive signals from the pixels, the readout circuitry having at least one signal path with gain switching, and a threshold detector electrically coupled to the readout circuitry to set a gain to be applied by the readout circuitry.
Abstract:
In general, the disclosure describes a sensor comprising a photo-sensitive silicon substrate configured to detect ultraviolet (UV), visible, and near-infrared (NIR) light and an upconversion layer comprising a plurality of crystals configured to convert short wave infrared light to UV, visible, or NIR light. An example sensor includes an upconversion layer comprising a plurality of crystals configured to convert electromagnetic radiation comprising a first range of wavelengths greater than 1100 nm to electromagnetic radiation comprising a second range of wavelengths less than or equal to 1100 nm and a photo-sensitive silicon substrate configured to detect the electromagnetic radiation comprising the second range of wavelengths.
Abstract:
An imaging system for capturing light over a wide dynamic range and method for operating the same are provided. In some aspects, the method includes positioning an imaging pixel to image a scene described by light signals that extend over a wide dynamic range, and selecting a different integration time for at least two photodiodes in the imaging pixel based on light signals received by the imaging pixel, wherein the photodiodes are coupled to a sense node, and each photodiode is controlled using a different transfer gate. The method also includes performing a readout of the imaging pixel using a readout circuit connected to the sense node, wherein a capacitance associated with the sense node is modified during the readout of the at least two photodiodes.
Abstract:
An imager has an array of pixels arranged in rows and columns, readout circuitry electrically coupled to the columns to receive signals from the pixels, the readout circuitry having at least one signal path with gain switching, and a threshold detector electrically coupled to the readout circuitry to set a gain to be applied by the readout circuitry.