Abstract:
In a waveguide-type optical element, broaderband operation becomes possible. The waveguide-type optical element includes optical waveguides (110 and 112) formed on a substrate (100) having an electro-optic effect and a control electrode for controlling an optical wave that is transmitted through the optical waveguide, the control electrode comprises a central electrode (104) and ground electrodes (106 and 108), the central electrode being formed along the optical waveguide, and the ground electrodes being formed so as to put the central electrode therebetween in a surface direction of the substrate at a predetermined distance from the central electrode, and the central electrode or the ground electrodes have multiple pairs of facets, each comprising two facets facing each other, along a transmission direction of high-frequency signals that are transmitted through the central electrode and the ground electrodes.
Abstract:
An optical waveguide device in which optical characteristics are less degraded even when a branch angle in a Y branch portion of an optical waveguide is great is provided.In an optical waveguide device in which an optical waveguide is formed on a substrate, the optical waveguide includes a first branch portion which branches light into two light rays at a branch angle of 1/35 rad or more, a second branch portion (not illustrated) and a third branch portion (not illustrated) are arranged to be connected to each of two branched waveguides branched from the first branch portion, a radiation light guiding waveguide is arranged between the two branched waveguides of the first branch portion, and guides radiation light radiated from between the two branched waveguides at the first branch portion to the outside of the optical waveguide, and an optical termination portion (an electrode) which absorbs the guided radiation light or emits the guided radiation light to the outside of the substrate is arranged in a termination portion of the radiation light guiding waveguide.
Abstract:
A thin-plate LN optical control device includes: a thin-plate LN optical waveguide element which includes an optical waveguide formed by thermal diffusion of Ti in a substrate made of lithium niobate, and a control electrode that is formed on the substrate and is configured to control a light wave propagating through the optical waveguide, and in which at least a part of the substrate is thinned; and a housing that accommodates the thin-plate LN optical waveguide element in an air-tight sealing manner. Oxygen is contained in a filler gas inside the housing.
Abstract:
An optical modulator has a ridge optical waveguide and a modulation electrode. The modulation electrode is composed of a signal electrode to which a modulation signal is supplied, a first ground electrode, and a second ground electrode, the signal electrode has a wide portion having a width wider than the width of the uppermost portion of the ridge optical waveguide, the first ground electrode has a central portion ground electrode component provided on a first surface so as to extend along a first direction, and the second ground electrode has a central portion ground electrode component provided on a second surface so as to extend along the first direction. The central portion ground electrode components respectively have a first and a second through-holes, and these through-holes overlap the wide portion of the signal electrode as seen in a planar view.
Abstract:
An object is to provide a light modulator capable of highly accurate bias control by maintaining main output characteristics and monitor characteristics in an appropriate relationship and matching a bias point determined using monitor output and an optimal bias point of main output. The light modulator includes an optical waveguide formed in a substrate having a thickness of 20 μm or less, in which the optical waveguide includes a Mach-Zehnder waveguide and an output waveguide for guiding signal light from a multiplexing portion of the Mach-Zehnder waveguide and outputting the signal light outside the substrate and monitoring means that monitors signal light or radiated light. Leaked light-removing means for removing some of the radiated light propagating through the output waveguide from the output waveguide and emitting the radiated light outside the substrate is provided in the light modulator.
Abstract:
A method according to an aspect of the present invention, is a method for manufacturing an optical waveguide element, including: an optical waveguide forming step of forming an optical waveguide extending in a first direction in a substrate by doping the substrate with an impurity for reducing a coercive electric field of the substrate, a ridge forming step of forming a first ridge part including the optical waveguide and a second ridge part intersecting the first ridge part, and a poling step of reversing a polarization direction of a region of the substrate divided by the second ridge part by applying voltage to the region.
Abstract:
A thin-plate LN optical control device includes: a thin-plate LN optical waveguide element which includes an optical waveguide formed by thermal diffusion of Ti in a substrate made of lithium niobate, and a control electrode that is formed on the substrate and is configured to control a light wave propagating through the optical waveguide, and in which at least a part of the substrate is thinned; and a housing that accommodates the thin-plate LN optical waveguide element in an air-tight sealing manner. Oxygen is contained in a filler gas inside the housing.
Abstract:
An optical modulator has a ridge optical waveguide and a modulation electrode. The modulation electrode is composed of a signal electrode to which a modulation signal is supplied, a first ground electrode, and a second ground electrode, the signal electrode has a wide portion having a width wider than the width of the uppermost portion of the ridge optical waveguide, the first ground electrode has a central portion ground electrode component provided on a first surface so as to extend along a first direction, and the second ground electrode has a central portion ground electrode component provided on a second surface so as to extend along the first direction. The central portion ground electrode components respectively have a first and a second through-holes, and these through-holes overlap the wide portion of the signal electrode as seen in a planar view.
Abstract:
To effectively prevent the acceleration of the drift phenomenon generated by the application of a high electric field to a substrate through a bias electrode in a waveguide type optical element. A waveguide type optical element includes a substrate (100) having an electro-optic effect, two optical waveguides (104 and 106) disposed on a surface of the substrate, a non-conductive layer (120) which is disposed on the substrate and is made of a material having a lower dielectric constant than the substrate, and a control electrode (150) which is disposed on the non-conductive layer and is intended to generate a refractive index difference between the two optical waveguides by respectively applying electric fields to the two optical waveguides, and the non-conductive layer is constituted of a material which includes silicon oxide, an oxide of indium, and an oxide of titanium and has a ratio between a molar concentration of the titanium oxide and a molar concentration of indium oxide of 1.2 or more, and a voltage generating an electric field of 1 V/μm or more in the substrate is applied to the control electrode.
Abstract:
An aspect of the present invention is an optical modulator including a substrate, a plurality of optical waveguides, and a plurality of modulation electrodes provided on the substrate in order to modulate light propagating through the optical waveguides. The modulation electrodes include signal electrodes, to which modulation signals are supplied, and ground electrodes. The signal electrodes include first and second signal electrodes. The ground electrodes include a first ground electrode provided between the first and second signal electrodes, a second ground electrode provided on the opposite side of the first signal electrode from the first ground electrode adjacent to the first signal electrode, and a third ground electrode provided on the opposite side of the second signal electrode from the first ground electrode adjacent to the second signal electrode. A concave groove is formed in each of the first to third ground electrodes.