Abstract:
A fingerprint sensing device having an image sensing device and configured to detecting fingerprint data of an input object. The image sensing device includes a plurality of lenses, and a plurality of sensing elements. The plurality of sensing elements includes a first sensing element has a field of view associated with a first lens of the plurality of lenses and laterally offset from a center of the first lens, and a second sensing element has a field of view associated with a second lens of the plurality of lens and laterally offset from a center of the second lens. Further, a processing system may be coupled to the image sensing device and operate the image sensing device to acquire fingerprint image to authenticate a user.
Abstract:
A device and system for automatically tracking a baseline input into a biometric sensor is provided. The device and system include a processing system with an amplifier having an input terminal and an output terminal for producing an output signal based on the input signal received by the input terminal. The processing system further includes at least one signal conditioning element coupled to the input terminal of the amplifier and configured to condition a compensation signal, and the processing system further includes a control circuit that adjusts one or more signal conditioning parameters of the at least one signal conditioning element based on the output signal of the amplifier. The at least one input signal received by the input terminal includes a combination of the at least one compensation signal and a signal from a first set of one or more receiver electrodes of the biometric sensor.
Abstract:
An optical sensor for imaging a biometric object includes: a cover layer transparent to light reflected off the biometric object; an optical layer, disposed below the cover layer, having a plurality of diffractive optical elements; and a sensing layer, having a plurality of sensing elements disposed below the optical layer, each of the sensing elements being configured to detect light from the biometric object. The plurality of diffractive optical elements of the optical layer are configured to direct light from the biometric object to the plurality of sensing elements.
Abstract:
Systems and methods for optical imaging are disclosed. An electronic device for imaging an input object includes a display comprising a sensing surface and an array of display pixels. The electronic device also includes a processing system communicatively coupled to the display, the processing system configured to: selectively illuminate one or more of the display pixels according to a pattern; acquire image data, from one or more detector pixels of the display, of the input object in contact with the sensing surface, wherein the image data corresponds to light from the illuminated display pixels that is reflected at the sensing surface of the display; and process an image of the input object from the image data based upon the pattern.
Abstract:
Embodiments of the invention generally provide an input device having a plurality of sensor electrodes that can be configured to be scanned in a first direction or a second direction. The input device includes a set of sensor electrodes and first and second sets of buses. The first buses are oriented in a first direction and the second buses are oriented in a second direction. The input device also includes a set of switching elements that are each configured to couple one of the sensor electrodes to either a bus in the first set of buses or a bus in the second set of buses. These embodiments allow the sensor electrodes to be scanned in a variety of patterns for flexible sensing functionality.
Abstract:
A device and system for automatically tracking a baseline input into a biometric sensor is provided. The device and system include a processing system with an amplifier having an input terminal and an output terminal for producing an output signal based on the input signal received by the input terminal. The processing system further includes at least one signal conditioning element coupled to the input terminal of the amplifier and configured to condition a compensation signal, and the processing system further includes a control circuit that adjusts one or more signal conditioning parameters of the at least one signal conditioning element based on the output signal of the amplifier. The at least one input signal received by the input terminal includes a combination of the at least one compensation signal and a signal from a first set of one or more receiver electrodes of the biometric sensor.
Abstract:
An input device having a plurality of low-visibility sensor electrodes and method for fabricating the same are provided. In one embodiment, an input device includes a plurality of sensor electrodes disposed over a display device. A first sensor electrode of the plurality of sensor electrodes includes a conductive mesh having a first periodicity defined by intersections of conductive traces forming the mesh. A terminal portion of one of the conductive traces terminating at an edge of the first sensor electrode has an orientation that is different than an orientation of a corresponding portion of the mesh defining the first periodicity. An end of the terminal portion proximate the edge laying over a subpixel has the same color as a subpixel of the display device which the end would lay over if the end had the same orientation as the corresponding portion of the mesh defining the first periodicity.
Abstract:
Systems and methods for optical imaging are disclosed. The systems and methods include a display for imaging an input object. The display includes a sensing surface; a plurality of display pixels; a plurality of detector pixels; and a processing system. The processing system is configured to determine a location of the input object relative to the sensing surface; illuminate one or more display pixels of the plurality of display pixels according to a pattern depending on the location of the input object; and acquire image data of the input object from one or more detector pixels of the plurality of detector pixels, wherein the image data corresponds to light from the one or more display pixels that is reflected at the sensing surface.
Abstract:
An optical sensor for imaging a biometric object includes: a cover layer transparent to light reflected off the biometric object; an optical layer, disposed below the cover layer, having a plurality of diffractive optical elements; and a sensing layer, having a plurality of sensing elements disposed below the optical layer, each of the sensing elements being configured to detect light from the biometric object. The plurality of diffractive optical elements of the optical layer are configured to direct light from the biometric object to the plurality of sensing elements.
Abstract:
Systems and methods for optical imaging are disclosed. The systems and methods include a display for imaging an input object. The display includes a sensing surface; a plurality of display pixels; a plurality of detector pixels; and a processing system. The processing system is configured to determine a location of the input object relative to the sensing surface; illuminate one or more display pixels of the plurality of display pixels according to a pattern depending on the location of the input object; and acquire image data of the input object from one or more detector pixels of the plurality of detector pixels, wherein the image data corresponds to light from the one or more display pixels that is reflected at the sensing surface.