Abstract:
Processes, systems, and techniques for multivalent ion desalination of a feed water use an apparatus that has a cathode, an anode, and an electrodialysis cell located between the cathode and anode. The cell has a product chamber through which the feed water flows, a multivalent cation concentrating chamber on a cathodic side of the product chamber through which the concentrated multivalent cation solution flows, and a multivalent anion concentrating chamber on an anodic side of the product chamber through which the concentrated multivalent anion solution flows. The product chamber and the multivalent cation concentrating chamber are each bounded by and share a cation exchange membrane, and the product chamber and the multivalent anion concentrating chamber are each bounded by and share an anion exchange membrane. A monovalent ion species is added to at least one of the concentrated multivalent cation solution and the concentrated multivalent anion solution.
Abstract:
A process for preparing an acrylamide-based crosslinking monomer including reacting in the presence of a catalyst an isocyanate compound containing at least two isocyanate groups with one of acrylic acid and methacrylic acid.
Abstract:
Processes, systems, and techniques for treating produced water drawn from a subterranean formation. The produced water is provided and contains dissolved solids and magnesium, calcium, and sodium ions. The produced water is desalinated using an electrically-driven membrane separation apparatus that includes alternating anion exchange membranes and cation exchange membranes defining opposing sides of alternating product and concentrate chambers. The desalinating involves flowing the produced water through the product chamber, flowing a second water through the concentrate chamber, and applying an electric potential across the cation and anion exchange membranes as the produced and second waters flow through the product and concentrate chambers, respectively. The product water is consequently produced and has a total dissolved solids content of between 300 mg/L and 8,000 mg/L, a total concentration of calcium ions and magnesium ions less than 100 mg/L, and a sodium adsorption ratio of 20 to 90.
Abstract:
The present disclosure is directed at an apparatus, method and plant for desalinating saltwater and contaminated saltwater. The apparatus includes a stack and a manifolding assembly. The stack includes a product chamber, a first and second concentrate chamber, an anion exchange membrane forming a boundary between the first concentrate chamber and the product chamber and a cation exchange membrane forming a boundary between the second concentrate chamber and the product chamber. The manifolding assembly includes product and concentrate manifolding fluidly coupled to the product and concentrate chambers respectively, to convey a saltwater being desalinated to and away from the product chamber, and a concentrate to and away from the concentrate chambers. The stack may include a diluent chamber and adjacent anion or cation exchange membranes between the product chamber, diluent chamber and concentrate chamber to respectively convey anions or cations across multiple chambers.
Abstract:
Methods, systems, and techniques for desalinating monovalent anion species from wastewater. A system includes an electrodialysis stack that performs the desalination. The stack has a cathode, an anode, and at least one electrodialysis cell. The at least one electrodialysis cell includes a product chamber, a metal cation concentrating chamber adjacent to a cathodic side of the product chamber, and a transfer solution chamber adjacent to an anodic side of the product chamber. The product chamber and the metal cation concentrating chamber are each bounded by and share a cation exchange membrane, the product chamber and the transfer solution chamber are each bounded by and share a monovalent anion exchange membrane, and the transfer solution chamber is bounded on an anodic side by one of an anion exchange membrane and a monovalent anion exchange membrane. The wastewater may be generated by a flue gas desulfurization process.
Abstract:
Processes, systems, and techniques for multivalent ion desalination of a feed water use an apparatus that has a cathode, an anode, and an electrodialysis cell located between the cathode and anode. The cell has a product chamber through which the feed water flows, a multivalent cation concentrating chamber on a cathodic side of the product chamber through which the concentrated multivalent cation solution flows, and a multivalent anion concentrating chamber on an anodic side of the product chamber through which the concentrated multivalent anion solution flows. The product chamber and the multivalent cation concentrating chamber are each bounded by and share a cation exchange membrane, and the product chamber and the multivalent anion concentrating chamber are each bounded by and share an anion exchange membrane. A monovalent ion species is added to at least one of the concentrated multivalent cation solution and the concentrated multivalent anion solution.
Abstract:
A method and system for treating and purifying saltwater contaminated by volatile compounds. The saltwater is evaporated resulting in a gas composed of water vapor and gaseous volatile compounds. The gas is condensed into a condensate containing the contaminated volatile compounds which is biologically treated to remove the volatile compounds thereby producing purified water. The latent heat released by condensing is used to evaporate the purified water into the atmosphere in an energy efficient manner.
Abstract:
Methods, systems, and techniques for desalinating a saltwater using a humidifier unit. The humidifier unit has a housing, which has a carrier gas inlet and a saltwater inlet. The humidifier unit also includes a packing, within the housing, having a surface with a critical surface tension of less than 25 mN/m according to the Zisman method. The packing is arranged to facilitate a saltwater that enters the housing through the saltwater inlet and a carrier gas that enters the housing through the carrier gas inlet to contact each other. The contact facilitates evaporation of the saltwater, which produces salt solids on at least a surface of the packing, a humidified gas and a concentrated brine.
Abstract:
Methods, systems, and techniques for removing ammonium from ammonia-containing water involve using a stack that has alternating product chambers and concentrate chambers for receiving ammonia-containing water and an acidic solution, respectively, with the chambers being bounded by alternating cation exchange membranes and proton permselective cation exchange membranes. Ammonium moves from the product chambers to the concentrate chambers across the CEMs and protons move from the concentrate chambers to the product chambers across the pCEMs when the stack is in use. An electrolyzer may also be used to convert the ammonium in the concentrate chambers into nitrogen.
Abstract:
A process for preparing an acrylamide-based crosslinking monomer comprising reacting in the presence of a catalyst an isocyanate compound containing at least two isocyanate groups with one of acrylic acid or methacrylic acid. These acrylamide-based crosslinking monomers are used in the preparation of coating compositions, adhesive compositions curable by applying thermal or radiation energy, and in the preparation of cation or anion exchange membranes.