Abstract:
A method of manufacturing a window for a display apparatus according to the present invention includes: providing, on a stage, a substrate including a foldable part bending around a folding axis extending in a first direction, and forming a groove on the foldable part. The forming the groove includes: grinding the foldable part by using a first machining wheel; grinding the foldable part by using a second machining wheel; and machining the foldable part by using a polishing wheel. The groove has at least one radius of curvature. The first machining wheel includes first abrasive grains, and the second machining wheel includes second abrasive grains less in size than the first abrasive grains.
Abstract:
A display device may include a substrate, a pixel, a transistor, a data line, a connection line, a pad, and an electrostatic discharge protection circuit. The substrate may include a display area and a pad area. The pad area may overlap the display area. The pixel may be supported by the display area and may include a pixel electrode. The data line may be electrically connected through the transistor to the pixel electrode. The connection line may be supported by the display area and may be electrically connected through the data line to the transistor. The pad may be supported by the pad area and may be electrically connected through the connection line to the data line. The display area and the pad area may be positioned between the connection line and the pad. The electrostatic discharge protection circuit may be electrically connected to the connection line.
Abstract:
A foldable display is disclosed. In one aspect, the foldable display includes a foldable display panel including first to fourth regions adjacent to each other. The foldable display also includes a first support located on a rear surface of the first region and a second support located on a rear surface of the fourth region. The foldable display panel is configured to be arranged in a first configuration in which the foldable display panel is unfolded and a second configuration in which the foldable display panel is folded so that the first support supports the first and second regions and the second support supports the third and fourth regions.
Abstract:
An input sensing circuit includes a base film. A plurality of first sensors are disposed on the base film. A plurality of second sensors are disposed on the base film. An input sensing driver is configured to sense a capacitance value between a first sensor of the plurality of first sensors and a second sensor of the plurality of second sensors. A pressure sensing part is in contact with the first sensor and the second sensor and includes a synthetic resin and a conductive material.
Abstract:
A method of manufacturing a window for a display apparatus according to the present invention includes: providing, on a stage, a substrate including a foldable part bending around a folding axis extending in a first direction, and forming a groove on the foldable part. The forming the groove includes: grinding the foldable part by using a first machining wheel; grinding the foldable part by using a second machining wheel; and machining the foldable part by using a polishing wheel. The groove has at least one radius of curvature. The first machining wheel includes first abrasive grains, and the second machining wheel includes second abrasive grains less in size than the first abrasive grains.
Abstract:
A display device may include a first substrate, a touch sensor disposed on the first substrate, a second substrate disposed on the touch sensor, and a display unit disposed on the second substrate and which displays an image. The touch sensor includes a piezoelectric device, which senses a touch thereon, and an adhesive layer, which attaches the first and second substrates to each other. The piezoelectric device and the adhesive layer are disposed in a same layer.
Abstract:
A flexible display device includes a display panel, the display panel including a display surface and a rear surface opposite each other, and a plurality of adhesive films on at least one of the display surface and the rear surface, each of the plurality of adhesive films including at least one hole, wherein the plurality of adhesive films have a decreasing density, as a distance from a neutral plane of the flexible display device increases.
Abstract:
An inkjet printing method includes: setting a first region to be printed at a constant print density within a target region to be printed; setting a second region within the target region and closer than the first region to an edge of the target region, wherein the second region is to be printed at a print density that varies according to a position; generating control data for a plurality of nozzles provided on an inkjet head in order to print the first region and the second region; and driving the inkjet head according to the control data.
Abstract:
A light-emitting diode transfer includes: a stage; a moving portion disposed on the stage and which performs a linear motion on the stage; a linear driving portion disposed on the moving portion and which performs a linear motion on the moving portion; and a head portion rotatably disposed on the linear driving portion and which picks up a light-emitting diode.
Abstract:
A display apparatus includes: a substrate; a light-emitting diode (“LED”) disposed above the substrate; a pixel-defining layer disposed above the substrate and including a concave portion which defines a space in which the LED is disposed; a light guider disposed in the space and between the LED and a first inner side surface of the concave portion; and a light blocker disposed above the pixel-defining layer to cover a top portion of the LED. The LED is disposed a second inner side surface of the concave portion, which is opposite to the first inner side surface, and spaced apart from a center of the concave portion, and the light guider guides light emitted from the LED to a region adjacent to the second inner side surface of the concave portion.