Abstract:
According to a communication network setting method of a wireless communication terminal, wireless communication can be performed with a communication network by reading in advance features related to a communication standard or a communication provider for recognizing a wireless communication network accessible at a current place, detecting features from a wireless communication signal received at the current place, and then setting a modem in a hardware or software scheme according to the features.
Abstract:
A multi-solution based radio system is provided. A radio system adaptively selects a solution to be used in a communication method based on a quality of service (QoS). The radio system estimates a QoS, such as by using information about at least one of a channel state, a signal state, a performance using a current solution, a complexity using a current solution, and a power consumption of a terminal with respect to a current solution. When the estimated QoS does not satisfy a predetermined condition, the radio system changes a current solution to an alternative solution or changes a parameter value applied to the current solution using feedback information.
Abstract:
Provided is a loop scheduling method including scheduling a first loop using execution units, and scheduling a second loop using execution units available as a result of the scheduling of the first loop. An n-th loop (n>2) may be scheduled using a result of scheduling an (n−1)-th loop, similar to the (n−1)-th loop. The first loop may be a higher priority loop than the second loop.
Abstract:
A mini-core and a processor using such a mini-core are provided in which functional units of the mini-core are divided into a scalar domain processor and a vector domain processor. The processor includes at least one such mini-core, and all or a portion of functional units from among the functional units of the mini-core operate based on an operation mode.
Abstract:
Disclosed are a communication method for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and a system therefor. The disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security and safety related services, and the like) on the basis of 5G communication technology and IoT-related technologies. According to various embodiments of the disclosure, a method for authenticating a smart key of an electronic device comprises the steps of: transmitting an authentication request in a predetermined cycle; receiving authentication responses from a smart key device; determining whether there is a relay attack on the basis of the interval of the received authentication responses; and authenticating the smart key device when it is determined that there is no relay attack. However, the disclosure is not delimited to the embodiment above, and other embodiments are possible.
Abstract:
The present invention relates to a communication technique, which is a convergence of IoT technology and 5G communication system for supporting higher data transmission rate beyond 4G system, and a system for same. The present invention can be applied to smart services (e.g. smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security- and safety-related services and the like) on the basis of 5G communication technology and IoT-related technology. A method for an electronic device according to various embodiments of the present invention comprises the steps of: registering user information and user customized setting information to a security server; detecting a relevant vehicle; and performing authentication in the security server by means of the user information if the relevant vehicle is detected, wherein, if the authentication is valid, the user customized setting information registered to the security server is transmitted to the relevant vehicle. However, the present invention is not limited to the above embodiments, and other embodiments are possible.
Abstract:
An apparatus and a method are provided including a parameter estimator, a controller, an initial channel estimator, and a channel estimator. The parameter estimator configured to estimate parameters related to a channel. The controller configured to select one of channel environments based on the parameters, and generate a control signal corresponding to the selected channel environment. The initial channel estimator configured to estimate an initial channel based on the control signal. The channel estimator configured to estimate a channel of remaining resource blocks, excluding resource blocks corresponding to a pilot signal, from among resource blocks, based on the initial channel and the control signal.
Abstract:
The present disclosure relates to determining proximity in a smart car system, and a method for operating a vehicle system comprises the steps of: receiving at least one signal transmitted by a user apparatus; transmitting measurement data for the at least one signal to a management apparatus; and receiving updated mapping data from the management apparatus for the measurement data and proximity data.
Abstract:
An apparatus and a method for performing a single instruction multiple data (SIMD) operation using pairing of registers are provided. An example SIMD apparatus includes a first register configured to store first result data generated by dyadic operators, and a second register configured to store second result data generated by the dyadic operators. The first register and the second register may be paired with each other. Examples also include the use of more than two dyadic operators and/or registers, as well as intermediate registers.
Abstract:
A method of performing a soft demapping, includes obtaining a signal from a symbol representing bits that is transmitted from a transmitter, and calculating a gradient of a reference line in a constellation for a bit based on a rotation angle and a channel state of the constellation. The method further includes selecting a candidate for each of lines that corresponds to a logic value of the bit from constellation points included in the constellation based on the signal and the gradient of the reference line, and calculating a log-likelihood ratio (LLR) of the bit based on the signal and the selected candidate for each of the lines.