Abstract:
The present invention defines signaling required for separating a network entity (NE) responsible for mobility management (MM) and session management (SM), which are main function of a control plane (CP) in a next generation (NextGen) mobile communication system, and presents a basic procedure for providing mobile communication services including the signaling. Therefore, complexity of core equipment responsible for the CP is reduced in order to implement a network slice function and provide various levels of mobility, and an effect of minimizing a signaling load therebetween can be obtain. In addition, it is possible to efficiently manage the resources of a base station (radio access network (RAN)) and a user plane network entity (UP NF).
Abstract:
FIG. 1 is a front perspective view of an electronic device, showing our new design; FIG. 2 is a front view thereof; FIG. 3 is a rear view thereof; FIG. 4 is a left-side view thereof; FIG. 5 is a right-side view thereof; FIG. 6 is a top view thereof; FIG. 7 is a bottom view thereof; and, FIG. 8 is a rear perspective view thereof. The broken lines illustrating portions of the electronic device form no part of the claimed design. The dot-dash broken lines in the figures represent a boundary of the claimed design and form no part thereof.
Abstract:
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. According to an embodiment of the present invention, a method of a terminal in a wireless mobile communication system comprises the steps of: receiving data network information including data network access permission region information and data network identification information; checking whether the terminal enters a data network access permission region, on the basis of the data network information; and performing a data network access procedure on the basis of the checking result.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transfer rate beyond a 4G communication system such as LTD. A method of a terminal connected to another base station (BS) for a second communication system in a wireless environment, the method comprising receiving, via the another BS from a BS for the first communication system, a radio resource control (RRC) connection reconfiguration message comprising information regarding a first key, generating a secure key for a security of the first communication system based on the first key, an identifier (ID) for indicating an algorithm for applying to the first key, a distinguisher for indicating a function of the algorithm indicated by the ID, and transmitting, to the BS, a signal based on the generated secure key.
Abstract:
The present disclosure relates to a communication technique and system for combining 5G communication systems with IoT technologies to achieve a higher data rate beyond 4G systems. The present disclosure can be applied to intelligent services (e.g., smart homes, smart buildings, smart cities, smart or connected cars, healthcare, digital education, retail businesses, and security and safety related services) on the basis of 5G communication technologies and IoT related technologies. The disclosure provides a method for an electronic device to provide an augmented reality service. The method may include receiving content related information for an object; transmitting a request for at least one content among multiple contents related to the object based on filtering information and the content related information, and outputting at least one content received in response to the request in a virtual region.
Abstract:
A data input method and apparatus for a mobile terminal having a touchscreen includes: sensing a touch gesture of a user on the touchscreen; checking whether the sensed touch gesture is a split keypad request; and displaying, when the sensed touch gesture is a split keypad request, at least two split keypads in a display area of the touchscreen, and displaying a function execution screen in an unused region (dead space) between the split keypads.
Abstract:
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. According to an embodiment of the present invention, a method of a terminal in a wireless mobile communication system comprises the steps of: receiving data network information including data network access permission region information and data network identification information; checking whether the terminal enters a data network access permission region, on the basis of the data network information; and performing a data network access procedure on the basis of the checking result.
Abstract:
A semiconductor package includes a package body, a fan-in-chip structure (FICS) in the package body, a first redistribution structure, and a second redistribution structure. The FICS includes a first chip having a front surface and a rear surface, a bridge wiring structure including a bridge wiring layer on the rear surface of the first chip, and a bridge pad electrically connected to the bridge wiring layer. The first redistribution structure is on a bottom surface of the package body and the front surface of the first chip and includes a first redistribution element. The second redistribution structure is on a top surface of the package body and the rear surface of the first chip and includes a second redistribution element electrically connected to the bridge wiring structure.
Abstract:
The present invention relates to a communication system and method for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system. The present invention provides a system and method by which a user equipment (UE) transmits, to an access and mobility management function (AMF), a first message including information related to a network slice in a first authentication, and receives, from the AMF, a third message including a result of a second authentication, wherein whether to require the second authentication is determined by the AMF based on the information and subscription information, and wherein the second authentication between the UE and a server is triggered based on the determination.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). An electronic device for providing a streaming service includes a controller, an encoder operatively coupled with the controller, and a transmitter operatively coupled with the control unit, wherein the controller is configured to provide a network available bandwidth estimated in a transmission layer of the electronic device from the transmission layer to an application layer, generate stream data from initial data based on the network available bandwidth, and transmit the stream data to another electronic device.