Abstract:
A first insulating layer is formed on a substrate. An opening is formed in the first insulating layer. A barrier layer is formed on the first insulating layer and conforming to sidewalls of the first insulating layer in the opening, and a conductive layer is formed on the barrier layer. Chemical mechanical polishing is performed to expose the first insulating layer and leave a barrier layer pattern in the opening and a conductive layer pattern on the barrier layer pattern in the opening, wherein a portion of the conductive layer pattern protrudes above an upper surface of the insulating layer and an upper surface of the barrier layer pattern. A second insulating layer is formed on the first insulating layer, the barrier layer pattern and the conductive layer pattern and planarized to expose the conductive layer pattern. A second substrate may be bonded to the exposed conductive layer pattern.
Abstract:
Semiconductor device including through via structure and redistribution structures is provided. The semiconductor device may include internal circuits on a first side of a substrate, a through via structure vertically penetrating the substrate to be electrically connected to one of the internal circuits, a redistribution structure on a second side of the substrate and electrically connected to the through via structure, and an insulating layer between the second side of the substrate and the redistribution structure. The redistribution structure may include a redistribution barrier layer and a redistribution metal layer, and the redistribution barrier layer may extend on a bottom surface of the redistribution metal layer and may partially surround a side of the redistribution metal layer.
Abstract:
A wafer carrier includes a base having a cavity provided at the center of the base and an outer sidewall extending along and away from an edge of the base to define the cavity. The cavity is configured to be filled with an adhesive layer. The wafer carrier is configured to be bonded to a wafer with an adhesive layer in the cavity of base such that the outer sidewall faces and is in contact with an edge of the wafer and the cavity faces a center of the wafer.
Abstract:
Provided are semiconductor devices with a through electrode and methods of fabricating the same. The methods may include forming a via hole at least partially penetrating a substrate, the via hole having an entrance provided on a top surface of the substrate, forming a via-insulating layer to cover conformally an inner surface of the via hole, forming a buffer layer on the via-insulating layer to cover conformally the via hole provided with the via-insulating layer, the buffer layer being formed of a material whose shrinkability is superior to the via-insulating layer, forming a through electrode to fill the via hole provided with the buffer layer, and recessing a bottom surface of the substrate to expose the through electrode.
Abstract:
An electronic device includes an upper insulating layer on a substrate. An upper redistribution structure is embedded in the upper insulating layer. The upper redistribution structure includes an upper contact portion, an upper pad portion, and an upper line portion between the upper contact portion and the upper pad portion. A passivation layer is on the upper insulating layer and the upper redistribution structure. An upper opening is configured to pass through the passivation layer and expose the upper pad portion. Vertical thicknesses of the upper pad portion and the upper contact portion are greater than a vertical thickness of the upper line portion.
Abstract:
A semiconductor device includes a substrate having a die region and a scribe region surrounding the die region, a plurality of via structures penetrating through the substrate in the die region, a portion of the via structure being exposed over a surface of the substrate, and a protection layer pattern structure provided on the surface of the substrate surrounding a sidewall of the exposed portion of the via structure and having a protruding portion covering at least a portion of the scribe region adjacent to the via structure.
Abstract:
The inventive concept provides semiconductor devices having through-vias and methods for fabricating the same. The method may include forming a via-hole opened toward a top surface of a substrate and partially penetrating the substrate, forming a via-insulating layer having a first thickness on a bottom surface of the via-hole and a second thickness smaller than the first thickness on an inner sidewall of the via-hole, forming a through-via in the via-hole which the via-insulating layer is formed in, and recessing a bottom surface of the substrate to expose the through-via. Forming the via-insulating layer may include forming a flowable layer on the substrate, and converting the flowable layer into a first flowable chemical vapor deposition layer having the first thickness on the bottom surface of the via-hole.
Abstract:
The inventive concept provides semiconductor devices having through-vias and methods for fabricating the same. The method may include forming a via-hole opened toward a top surface of a substrate and partially penetrating the substrate, forming a via-insulating layer having a first thickness on a bottom surface of the via-hole and a second thickness smaller than the first thickness on an inner sidewall of the via-hole, forming a through-via in the via-hole which the via-insulating layer is formed in, and recessing a bottom surface of the substrate to expose the through-via. Forming the via-insulating layer may include forming a flowable layer on the substrate, and converting the flowable layer into a first flowable chemical vapor deposition layer having the first thickness on the bottom surface of the via-hole.
Abstract:
The inventive concept provides semiconductor devices having through-vias and methods for fabricating the same. The method may include forming a via-hole opened toward a top surface of a substrate and partially penetrating the substrate, forming a via-insulating layer having a first thickness on a bottom surface of the via-hole and a second thickness smaller than the first thickness on an inner sidewall of the via-hole, forming a through-via in the via-hole which the via-insulating layer is formed in, and recessing a bottom surface of the substrate to expose the through-via. Forming the via-insulating layer may include forming a flowable layer on the substrate, and converting the flowable layer into a first flowable chemical vapor deposition layer having the first thickness on the bottom surface of the via-hole.
Abstract:
An electronic device includes an upper insulating layer on a substrate. An upper redistribution structure is embedded in the upper insulating layer. The upper redistribution structure includes an upper contact portion, an upper pad portion, and an upper line portion between the upper contact portion and the upper pad portion. A passivation layer is on the upper insulating layer and the upper redistribution structure. An upper opening is configured to pass through the passivation layer and expose the upper pad portion. Vertical thicknesses of the upper pad portion and the upper contact portion are greater than a vertical thickness of the upper line portion.