Abstract:
Provided are an oxide including a compound represented by Formula 1, a method of pre paring the same, a solid electrolyte including the oxide, and an electrochemical device including the oxide:
LiaTa2−yAyP1−xMxO8−zXz Formula 1
wherein, in Formula 1, M is an element having an oxidation number of +3, A is an element having an oxidation number of +4, +5, or +6, or a combination thereof, when A is an element having an oxidation number of +4, a is 1+y+2x−z, when A is an element having an oxidation number of +5, a is 1+2x−z, when A is an element having an oxidation number of +6, a is 1−y+2x−z, X is a halogen atom or a pseudohalogen, and 0≤y
Abstract:
A solid ion conductor compound includes a compound represented by Formula 1: Li6−wHf2−xMxO7−yZy Formula 1 where, in Formula 1, M is an element having an oxidation number of a and a is 5, 6, or a combination thereof, Z is an element having an oxidation number of −1, and 0
Abstract:
An electrode active material including a vanadium oxide represented by Formula 1, VOx Formula 1 wherein vanadium in the vanadium oxide has a mixed oxidation state of a plurality of oxidation numbers, and the oxidation numbers include an oxidation number of +3, and wherein, in Formula 1 above, 1.5
Abstract:
A composite positive electrode active material includes: a first metal oxide that has a layered structure and is represented by Formula 1; and a second metal oxide that has a spinel structure and is represented by Formula 2, wherein the composite positive electrode active material includes a composite of the first metal oxide and the second metal oxide: LiMO2 Formula 1 LiMe2O4 Formula 2 wherein, in Formulas 1 and 2, M and Me are each independently at least one element selected from Groups 2 to 14 of the periodic table, and a molar ratio of Li/(M+Me) in the composite is less than 1.
Abstract:
An electrode active material including a vanadium oxide represented by Formula 1, VOx Formula 1 wherein vanadium in the vanadium oxide has a mixed oxidation state of a plurality of oxidation numbers, and the oxidation numbers include an oxidation number of +3, and wherein, in Formula 1 above, 1.5
Abstract:
An all-solid secondary battery including: a positive electrode layer including a positive active material; a negative electrode layer including a negative electrode current collector and a first negative active material layer; and a solid electrolyte layer between the positive electrode layer and the negative electrode layer, the solid electrolyte including a solid electrolyte, wherein the first negative active material layer is adjacent to the solid electrolyte layer, the first negative active material layer includes a multi-component metal composite including M1, M2, M3, and X, an atomic ratio of M2M3X to M1M2M3X in the multi-component metal composite is in a range of about 0.5 to about 0.85, and an atomic ratio of M2M3X to M1 ion is in a range of about 1 to about 5.51.
Abstract:
Provided herein is a lithium battery including: a cathode including a cathode active material; an anode including an anode active material; an electrolyte between the cathode and the anode; and a separator impregnated with the electrolyte, wherein the separator includes cellulose nanofibers, and wherein a differential scanning calorimetry (DSC) thermogram of the separator evinces an exothermic reaction peak, represented by a differential value (dH/dT), at a temperature in a range of about 150° C. to about 200° C.
Abstract:
Provided herein are a porous film, a separator including the same, an electrochemical device including the separator, and a method of preparing the porous film. The porous film includes first cellulose nanofibers which is impregnated with a carbonate-based solvent-containing electrolyte solution and has a reaction heat of 150 J/g or less at a temperature ranging from about 30° C. to about 300° C., as measured by differential scanning calorimetry (DSC).