Abstract:
A compound of Chemical Formula 1, and an organic photoelectric device, an image sensor, and an electronic device including the same are disclosed: In Chemical Formula 1, each substituent is the same as defined in the detailed description.
Abstract:
A compound of Chemical Formula 1, and an organic photoelectric device, an image sensor, and an electronic device including the same are disclosed: In Chemical Formula 1, each substituent is the same as defined in the detailed description.
Abstract:
A photoelectric conversion device includes a first electrode and a second electrode facing each other, a photoelectric conversion layer between the first electrode and the second electrode and configured to absorb light in at least one part of a wavelength spectrum of light and to convert it into an electric signal, and an organic auxiliary layer between the first electrode and the photoelectric conversion layer and having a higher charge mobility than a charge mobility of the photoelectric conversion layer. An organic sensor may include the photoelectric conversion device. An electronic device may include the organic sensor.
Abstract:
A sensor configured to sense heat or infrared light including a substrate includes a plurality of recess portions; a cavity inside the substrate along a bottom surface and opposing side surfaces of the substrate; a lower reflective layer disposed on at least one of an upper surface of the bottom surface of the substrate, a lower surface of the bottom surface of the substrate, and a surface opposite to the lower surface of the bottom surface of the substrate; a first electrode and a second electrode disposed inside both side surfaces of the recess portion and facing each other; a pixel structure configured to sense heat or infrared light inside the recess portion and embedded in the substrate; and a planarization layer covering the entire upper portion of the substrate.
Abstract:
An image sensor includes a semiconductor substrate integrated with at least one of a first photo-sensing device that may sense a first wavelength spectrum of visible light and a second photo-sensing device that may sense second wavelength spectrum of visible light, and a third photo-sensing device on the semiconductor substrate that may selectively sense third wavelength spectrum of visible light in a longer wavelength spectrum of visible light than the first wavelength spectrum of visible light and the second wavelength spectrum of visible light. The first photo-sensing device and the second photo-sensing device may overlap with each other in a thickness direction of the semiconductor substrate.
Abstract:
An organic photoelectric device includes a first electrode and a second electrode facing each other, and an active layer between the first electrode and the second electrode, wherein the active layer includes an n-type semiconductor compound that is transparent in a visible ray region and represented by Chemical Formula 1, and a p-type semiconductor compound having a maximum absorption wavelength in a wavelength region of about 500 nm to about 600 nm of a visible ray region.
Abstract:
A compound for an organic photoelectric device includes at least one of a compound represented by Chemical Formula 1, a compound represented by Chemical Formula 2 and a combination thereof.
Abstract:
A light transmission type of two-sided solar cell includes a front sub-cell on a first side of the transparent substrate, the front sub-cell including a first electrode, a first photoactive layer, and a second electrode, and a rear sub-cell on a second side of the transparent substrate, the rear sub-cell including a third electrode, a second photoactive layer, and a fourth electrode, at least one of the third electrode and the fourth electrode being a reflection electrode, the reflection electrode having an area of about 50 to about 95% relative to an area of the second photoactive layer.
Abstract:
According to example embodiments, a hybrid metal oxide having a network structure includes an oxygen atom that is covalently bonded to a first metal and a second metal. At least one of the first metal and the second metal has two or more oxidation states. A solar cell may have an interlayer including the hybrid metal oxide. According to example embodiments, a hybrid metal oxide may be formed using a sol-gel process from a solution including a first metal precursor and a second metal precursor.
Abstract:
Disclosed are an n-type semiconductor including compound represented by Chemical Formula 1 or Chemical Formula 2, an image sensor, and an electronic device. In Chemical Formula 1 and Chemical Formula 2, each substituent is as defined in the detailed description.