Abstract:
A method of making a transducer head disclosed herein includes depositing a spacer layer on an NFT layer of the transducer head, forming an etch stop layer on a spacer layer of a transducer, depositing a cladding layer on the etch stop layer, and milling the cladding layer at a sloped angle such that the milling stops at the etch stop layer.
Abstract:
An apparatus includes a waveguide configured to deliver light to a transducer region. The apparatus also includes a plasmonic transducer that has two metal elements configured as side-by-side plates on a substrate-parallel plane with a gap therebetween. The gap is disposed along the substrate-parallel plane and has an input end disposed proximate the transducer region and an output end. The transducer is configured to provide a surface plasmon-enhanced near-field radiation pattern proximate the output end in response to the light received by the waveguide.
Abstract:
A recording head includes a waveguide configured to deliver light from a light source to a media-facing surface of the recording head. A near-field transducer is at the media-facing surface the proximate the waveguide. The near-field transducer includes a plasmonic structure with at least two opposing internal surfaces. A dielectric material fills a region between the at least two opposing internal surfaces. A dielectric slit extends between the at least two opposing internal surfaces. The dielectric slit is substantially parallel to the media-facing surface and includes a transparent material with a refractive index different than that of the dielectric material.
Abstract:
An apparatus includes a waveguide extending along a light-propagation direction between a light source and a media-facing surface. The waveguide comprises an assistant layer configured to receive light from a light source, truncated with an intermediate bottom cladding layer. A core layer comprises a coupling end configured to receive light from the assistant layer. The coupling end comprises a taper that widens toward the media-facing surface. A near field transducer is disposed proximate the media-facing surface and is configured to receive the light from the core layer.
Abstract:
A method of making a transducer head disclosed herein includes depositing a spacer layer on an NFT layer of the transducer head, forming an etch stop layer on a spacer layer of a transducer, depositing a cladding layer on the etch stop layer, and milling the cladding layer at a sloped angle such that the milling stops at the etch stop layer.
Abstract:
A waveguide has an input end near a top of a slider coupled to receive light from an energy source. The waveguide delivers the light at an output end of the waveguide near a bottom of the slider. The apparatus includes light blocking members on respective first and second cross track sides of the waveguide. The light blocking members are configured to block stray light away from a light path. The light blocking members are at a location along a length of the waveguide between the top and the bottom of the slider. Confinement of light within the waveguide is near a maximum at the location.
Abstract:
An apparatus includes a waveguide configured to deliver light to a transducer region. The apparatus also includes a plasmonic transducer that has two metal elements configured as side-by-side plates on a substrate-parallel plane with a gap therebetween. The gap is disposed along the substrate-parallel plane and has an input end disposed proximate the transducer region and an output end. The transducer is configured to provide a surface plasmon-enhanced near-field radiation pattern proximate the output end in response to the light received by the waveguide.