Abstract:
A magnetic device including a magnetic writer; and an overcoat positioned over at least the magnetic writer, the overcoat including oxides of yttrium, oxides of scandium, oxides of lanthanoids, oxides of actionoids, oxides of zinc, or combinations thereof
Abstract:
A magnetic device including a magnetic writer; and an overcoat positioned over at least the magnetic writer, the overcoat including oxides of yttrium, oxides of scandium, oxides of lanthanoids, oxides of actionoids, oxides of zinc, or combinations thereof.
Abstract:
An apparatus comprises a slider of a magnetic recording head having an air bearing surface (ABS), a write pole terminating at or near the ABS, and a near-field transducer (NFT) adjacent the write pole. A light delivery arrangement extends through the slider and terminates at the ABS. The light delivery arrangement is configured to communicate light through the slider and to the NFT. A transparent heat sink layer abuts a terminal end portion of the light delivery arrangement and terminates at the ABS. The heat sink layer has a thermal conductivity greater than that of the light delivery arrangement.
Abstract:
A magnetic write head is disclosed that includes a slider that includes a laser diode having a light-emitting edge or surface of a laser diode and an optical waveguide. The disclosed magnetic write head also includes a dielectric layer disposed in a gap between the laser diode and an input to the optical waveguide. The dielectric layer fills the gap completely and provides a low-loss optical pathway for the laser diode to the input of the optical waveguide. Also disclosed is a method that includes spinning on a dielectric in a gap between the light-emitting surface and the optical waveguide coupler, wherein after the spinning on, the laser diode is optically coupled to the optical waveguide coupler through the dielectric.
Abstract:
Devices having an air bearing surface (ABS) and including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg includes a rear peg portion and a peg tip, the rear peg portion and the peg tip are different materials and the peg tip includes: one or more metals; one or more nanoparticles comprising oxides, nitrides, carbides or combinations thereof; one or more conducting oxides, conducting nitrides, conducting bromides, conducting carbides, or combinations thereof; one or more semiconductors; or combinations thereof.
Abstract:
Devices having an air bearing surface (ABS) and including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg includes a rear peg portion and a peg tip, the rear peg portion and the peg tip are different materials and the peg tip includes: one or more metals; one or more nanoparticles comprising oxides, nitrides, carbides or combinations thereof; one or more conducting oxides, conducting nitrides, conducting bromides, conducting carbides, or combinations thereof; one or more semiconductors; or combinations thereof.
Abstract:
A magnetic device including a magnetic writer; and an overcoat positioned over at least the magnetic writer, the overcoat including oxides of yttrium, oxides of scandium, oxides of lanthanoids, oxides of actionoids, oxides of zinc, or combinations thereof.
Abstract:
A magnetic device including a magnetic writer; and an overcoat positioned over at least the magnetic writer, the overcoat including oxides of yttrium, oxides of scandium, oxides of lanthanoids, oxides of actionoids, oxides of zinc, or combinations thereof.
Abstract:
A magnetic write head is disclosed that includes a slider that includes a laser diode having a light-emitting edge or surface of a laser diode and an optical waveguide. The disclosed magnetic write head also includes a dielectric layer disposed in a gap between the laser diode and an input to the optical waveguide. The dielectric layer fills the gap completely and provides a low-loss optical pathway for the laser diode to the input of the optical waveguide. Also disclosed is a method that includes spinning on a dielectric in a gap between the light-emitting surface and the optical waveguide coupler, wherein after the spinning on, the laser diode is optically coupled to the optical waveguide coupler through the dielectric.