Abstract:
A reader includes top and bottom reader stacks disposed between a top and bottom shield. The top and bottom reader stacks are offset relative to each other in a downtrack direction. Top side shields surround the top reader stack in a crosstrack direction, and bottom side shields surround the bottom reader stack in the crosstrack direction. A split middle shield is between the top and bottom reader stacks and the top and bottom side shields. The split middle shield includes top and bottom portions separated by an isolation layer, the top and bottom portions respectively coupled to the top and bottom reader stacks.
Abstract:
A magnetic stack is disclosed. The magnetic stack includes a magnetically responsive lamination that includes a ferromagnetic free layer, a synthetic antiferromagnetic (SAF) structure, and a spacer layer positioned between the ferromagnetic free layer and the SAF structure. The magnetically responsive lamination is separated from a sensed data bit stored in an adjacent medium by an air bearing surface (ABS). The stack also includes a first antiferromagnetic (AFM) structure coupled to the SAF structure a predetermined offset distance from the ABS, and a second AFM structure that is separated from the first AFM structure by a first shield layer.
Abstract:
Various embodiments may configure a data storage device with at least a magnetic element having a magnetic stack that is configured with an air bearing surface (ABS) and is separated from a side shield. The side shield can be biased by a biasing layer that contacts the side shield and is separated from the ABS.
Abstract:
A magnetic element may be constructed in accordance with various embodiments as a data reader. The magnetic element can have at least a magnetic reader that contacts a top shield and is separated from a side shield on an air bearing surface (ABS). The side shield may be antiferromagnetically coupled to the top shield via a coupling layer disposed between the top and side shields.
Abstract:
Tolerances for manufacturing reader structures for transducer heads continue to grow smaller and storage density in corresponding storage media increases. Reader stop layers may be utilized during manufacturing of reader structures to protect various layers of the reader structure from recession and/or scratches while processing other non-protected layers of the reader structure. For example, the stop layer may have a very low polish rate during mechanical or chemical-mechanical polishing. Surrounding areas may be significantly polished while a structure protected by a stop layer with a very low polish rate is substantially unaffected. The stop layer may then be removed via etching, for example, after the mechanical or chemical-mechanical polishing is completed.
Abstract:
A reader includes top and bottom reader stacks that are offset relative to each other in a downtrack direction and disposed between a top shield and a bottom shield. Top side shields surround the top reader stack in a crosstrack direction, and bottom side shields surround the bottom reader stack in the crosstrack direction. A middle shield is between the top and bottom reader stacks and the top and bottom side shields. The middle shield includes a common electrical conductive path coupled to the top and bottom reader stacks. A middle lead is coupled to an edge of the middle shield.
Abstract:
A reader includes top and bottom reader stacks disposed between a top and bottom shield. The top and bottom reader stacks are offset relative to each other in a downtrack direction. Top side shields surround the top reader stack in a crosstrack direction, and bottom side shields surround the bottom reader stack in the crosstrack direction. A split middle shield is between the top and bottom reader stacks and the top and bottom side shields. The split middle shield includes top and bottom portions separated by an isolation layer, the top and bottom portions respectively coupled to the top and bottom reader stacks.
Abstract:
A data reader and associated method of making are generally provided. A data reader capable of sensing adjacent data bits may be configured at least with a magnetic stack disposed between first and second side shields. Each side shield may have a polish stop layer that is tuned to provide a first predetermined polish rate.
Abstract:
A data reader and associated method of making are generally provided. A data reader capable of sensing adjacent data bits may be configured at least with a magnetic stack disposed between first and second side shields. Each side shield may have a polish stop layer that is tuned to provide a first predetermined polish rate.
Abstract:
A reader includes a free layer and a side shield that biases the free layer. The side shield includes a main bias layer having a first magnetic moment value and a first magnetization direction. The side shield also includes a compensation bias layer having a second magnetic moment value that is less than the first magnetic moment value and a second magnetization direction that is opposite to the first magnetization direction.