Abstract:
A memory device capable of rescuing defective characteristics that occur after packaging includes a memory cell array including a plurality of memory cells and an antifuse circuit unit including at least one antifuse. The antifuse circuit unit stores a defective cell address of the memory cell array in the at least one antifuse and reads the defective cell address to an external source. The antifuse circuit unit stores a defective characteristic code in the at least one antifuse, wherein the defective characteristic code is related to at least one of a timing parameter spec., a refresh spec., an input/output (I/O) trigger voltage spec., and a data training spec. of the memory device, and outputs the defective characteristic code to an external source.
Abstract:
A synchronous semiconductor memory device includes an output control signal generator, which generates an output control signal corresponding to a signal obtained by delaying a read information signal in response to a delay internal clock signal obtained by dividing an internal clock signal by n, first and second sampling signals obtained by delaying the internal clock signal, a first output control clock signal obtained by dividing the internal clock signal by n, and a column address strobe (CAS) latency signal. The synchronous semiconductor memory device also includes a data output buffer, which outputs data by buffering internal data in response to the output control signal and the first output control clock signal.
Abstract:
Circuits, methods and systems are provided to reduce skew between a first digital signal that is transmitted by a first driver circuit over a first signal line, and a second digital signal that is transmitted by a second driver circuit over a second signal line. Skew may be reduced by sourcing or sinking additional current to or from the first signal line in response to the first digital signal and the second digital signal transitioning to opposite logical values, and otherwise refraining from sourcing or sinking the additional current to or from the first signal line. Skew may also be reduced between the first digital signal that is transmitted by the first driver circuit over the first signal line and a third digital signal that is transmitted by a third driver circuit over a third signal line by sourcing or sinking additional current to or from the first signal line in response to the first digital signal and the third digital signal transitioning to opposite logical values, and to otherwise refrain from sourcing or sinking the additional current to or from the first signal line.
Abstract:
Integrated circuit devices include data inversion circuits therein that are configured to evaluate at least first and second ordered groups of input data in parallel with an ordered group of output data previously generated by the data inversion circuit. The data inversion circuit is further configured to generate inverted versions of the first and second ordered groups of input data as versions of the first and second ordered groups of data in parallel at outputs thereof whenever a number of bit differences between the first ordered group of input data and the ordered group of output data is greater than one-half a size of the first ordered group of input data and a number of bit differences between the second ordered group of input data and the version of the first ordered group of input data is greater than one-half a size of the second ordered group of input data, respectively.
Abstract:
A latency signal generator and method thereof are provided. The example latency signal generator may include a sampling clock signal generator adjusting a plurality of initial sampling clock signals based on a received clock signal to generate a plurality of adjusted sampling clock signals, a latch enable signal supply unit adjusting a plurality of initial latch enable signals based on a given one of the plurality of initial sampling clock signals to generate a plurality of adjusted latch enable signals and a latch unit including a plurality of latency latches, each of the plurality of latency latches selectively latching a given internal read command based on one of the plurality of adjusted sampling clock signals and one of the plurality of adjusted latch enable signals.
Abstract:
A synchronous semiconductor memory device includes a data input buffer and a data strobe input buffer. The data strobe input buffer includes an input buffer circuit and a detection circuit. The input buffer circuit is configured to be enabled based on an active signal, and to compare a data strobe signal with a first reference voltage to generate an internal data strobe signal. The detection circuit is configured to be enabled based on the active signal, and to compare the data strobe signal with a second reference voltage to generate a detection signal for enabling the data input buffer.
Abstract:
A memory device capable of rescuing defective characteristics that occur after packaging includes a memory cell array including a plurality of memory cells and an antifuse circuit unit including at least one antifuse. The antifuse circuit unit stores a defective cell address of the memory cell array in the at least one antifuse and reads the defective cell address to an external source. The antifuse circuit unit stores a defective characteristic code in the at least one antifuse, wherein the defective characteristic code is related to at least one of a timing parameter spec., a refresh spec., an input/output (I/O) trigger voltage spec., and a data training spec. of the memory device, and outputs the defective characteristic code to an external source.
Abstract:
A semiconductor memory device having an open bitline memory structure from which an edge dummy memory block is removed, the semiconductor memory device includes a memory block, an edge sense amplification block including a first sense amplifier having a first bitline, a first complementary bitline, and a first amplification circuit comprising a first transistor having a first size, a central sense amplification block including a second sense amplifier having a second bitline, a second complementary bitline, and a second amplification circuit comprising a second transistor having a second size different from the first size, a capacitor block electrically connected to the edge sense amplification block.
Abstract:
A data transmission/reception system can lessen a skew between data and clock signal by substantially reducing a data reception error. The data transmission/reception system using a first clock signal and a second clock signal having a phase difference corresponding to a half of data bit period as compared with the first clock signal includes a skew information extracting unit and a timing control unit. The skew information extracting unit obtains and outputs skew edge information data necessary for a skew removal by sampling data transmitted in a training operating mode as one of the first and second clock signals in a receiving side. The timing control unit receives the skew edge information data through a transmitting side, and compares its phase with a phase of the transmitted data and controls a timing between transmission data and a transmission sampling clock signal applied to a transmission output unit according to the phase comparison result. Time taken in a training operation can be relatively shortened, and circuits of the receiving side can be simplified and power consumption can be relatively reduced.
Abstract:
An integrated circuit includes M first terminals and N second terminals, where M and N are positive integers, and where M>N>1. The circuit further includes a converter which receives M base-A-level input signals from the M first terminals, respectively, encodes each of AM values represented by the M base-A-level input signals as a different base-K value represented by N base-K-level output signals, A and K are positive integers, and where K>A>1. The converter then outputs the N base-K-level output signals to the N second terminals, respectively.
Abstract translation:集成电路包括M个第一端子和N个第二端子,其中M和N是正整数,并且其中M> N> 1。 该电路还包括转换器,其分别从M个第一端子接收M个基本A电平输入信号,将由M个基本A电平输入信号表示的每个A-M值编码为 由N个基极K电平输出信号表示的不同的基极K值,A和K是正整数,其中K> A> 1。 然后,转换器分别将N个基本K电平输出信号输出到N个第二端子。