PLATFORM AND SOFTWARE FRAMEWORK FOR DATA INTENSIVE APPLICATIONS IN THE CLOUD

    公开(公告)号:US20170109415A1

    公开(公告)日:2017-04-20

    申请号:US15339186

    申请日:2016-10-31

    Inventor: Sanhita Sarkar

    Abstract: A system deploys visualization tools, business analytics software, and big data software in a multi-instance mode on a large, coherent shared memory many-core computing system. The single machine solution provides or high performance and scalability and may be implemented remotely as a large capacity server (i.e., in the cloud) or locally to a user. Most big data software running in a single instance mode has limitations in scalability when running on a many-core and large coherent shared memory system. A configuration and deployment technique using a multi-instance approach, which also includes visualization tools and business analytics software, maximizes system performance and resource utilization, reduces latency and provides scalability as needed, for end-user applications in the cloud.

    Deploying software in a multi-instance node
    3.
    发明授权
    Deploying software in a multi-instance node 有权
    在多实例节点中部署软件

    公开(公告)号:US09424091B2

    公开(公告)日:2016-08-23

    申请号:US14266758

    申请日:2014-04-30

    CPC classification number: G06F9/5016 G06F9/5027 G06F9/5055

    Abstract: A system for deploying big data software in a multi-instance node. The optimal CPU memory and core configuration for a single instance database is determined. After determining an optimal core-memory ratio for a single instance execution, the software is deployed in multi-instance mode on single machine by applying the optimal core-memory ratio for each of the instances. The multi-instance database may then be deployed and data may be loaded in parallel for the instances.

    Abstract translation: 用于在多实例节点中部署大数据软件的系统。 确定单个实例数据库的最佳CPU内存和核心配置。 在确定单个实例执行的最佳核心存储器比率之后,通过对每个实例应用最优核心存储器比率,在单机器上以多实例模式部署软件。 然后可以部署多实例数据库,并且可以为实例并行加载数据。

    SOFTWARE DESIGN PATTERN FOR ADAPTING A GRAPH DATABASE VISUALIZATION SOFTWARE
    4.
    发明申请
    SOFTWARE DESIGN PATTERN FOR ADAPTING A GRAPH DATABASE VISUALIZATION SOFTWARE 审中-公开
    适用于图形数据库可视化软件的软件设计模式

    公开(公告)号:US20140330867A1

    公开(公告)日:2014-11-06

    申请号:US14266656

    申请日:2014-04-30

    CPC classification number: G06F16/9024 G06F16/904

    Abstract: An adapter retrieves graph data from one or more graph databases and adapts the data to be shown through a visualization tool. The adapter may be used to convert multiple formats of graph data into a format which is readable and useable by the visualization tool. The adapter module may make a connection with a graph database and query the database for particular graph data. Once retrieved, the stream of retrieved graph data may be used to populate a template in Java form. From the template, the visualization tool may provide a visualization of the retrieved data.

    Abstract translation: 适配器从一个或多个图形数据库中检索图形数据,并通过可视化工具调整要显示的数据。 适配器可用于将多种格式的图形数据转换成可视化工具可读和可使用的格式。 适配器模块可以与图形数据库建立连接,并查询数据库以获取特定的图形数据。 一旦检索到,检索的图形数据流可以用于以Java形式填充模板。 从模板中,可视化工具可以提供检索到的数据的可视化。

    PLATFORM AND SOFTWARE FRAMEWORK FOR DATA INTENSIVE APPLICATIONS IN THE CLOUD
    5.
    发明申请
    PLATFORM AND SOFTWARE FRAMEWORK FOR DATA INTENSIVE APPLICATIONS IN THE CLOUD 有权
    数据强化应用在云中的平台和软件框架

    公开(公告)号:US20140330851A1

    公开(公告)日:2014-11-06

    申请号:US14266764

    申请日:2014-04-30

    Inventor: Sanhita Sarkar

    Abstract: A system deploys visualization tools, business analytics software, and big data software in a multi-instance mode on a large, coherent shared memory many-core computing system. The single machine solution provides or high performance and scalability and may be implemented remotely as a large capacity server (i.e., in the cloud) or locally to a user. Most big data software running in a single instance mode has limitations in scalability when running on a many-core and large coherent shared memory system. A configuration and deployment technique using a multi-instance approach, which also includes visualization tools and business analytics software, maximizes system performance and resource utilization, reduces latency and provides scalability as needed, for end-user applications in the cloud.

    Abstract translation: 系统在大型,一致的共享内存多核计算系统上以多实例模式部署可视化工具,业务分析软件和大数据软件。 单机解决方案提供或高性能和可扩展性,并且可以远程实现为大容量服务器(即,在云中)或本地地向用户实现。 在单实例模式下运行的大多数数据软件在多核和大型一致的共享内存系统上运行时具有可扩展性的局限性。 使用多实例方法的配置和部署技术,其中还包括可视化工具和业务分析软件,可最大限度地提高系统性能和资源利用率,减少延迟并根据需要提供可扩展性,以便云中的最终用户应用程序。

    DEPLOYING SOFTWARE IN A MULTI-INSTANCE NODE
    6.
    发明申请
    DEPLOYING SOFTWARE IN A MULTI-INSTANCE NODE 有权
    在多个代码节点中部署软件

    公开(公告)号:US20170031720A1

    公开(公告)日:2017-02-02

    申请号:US15221936

    申请日:2016-07-28

    CPC classification number: G06F9/5016 G06F9/5027 G06F9/5055

    Abstract: A system for deploying big data software in a multi-instance node. The optimal CPU memory and core configuration for a single instance database is determined. After determining an optimal core-memory ratio for a single instance execution, the software is deployed in multi-instance mode on single machine by applying the optimal core-memory ratio for each of the instances. The multi-instance database may then be deployed and data may be loaded in parallel for the instances.

    Abstract translation: 用于在多实例节点中部署大数据软件的系统。 确定单个实例数据库的最佳CPU内存和核心配置。 在确定单个实例执行的最佳核心存储器比率之后,通过对每个实例应用最优核心存储器比率,在单机器上以多实例模式部署软件。 然后可以部署多实例数据库,并且可以为实例并行加载数据。

    Platform and software framework for data intensive applications in the cloud
    7.
    发明授权
    Platform and software framework for data intensive applications in the cloud 有权
    用于云中数据密集型应用的平台和软件框架

    公开(公告)号:US09513934B2

    公开(公告)日:2016-12-06

    申请号:US14266764

    申请日:2014-04-30

    Inventor: Sanhita Sarkar

    Abstract: A system deploys visualization tools, business analytics software, and big data software in a multi-instance mode on a large, coherent shared memory many-core computing system. The single machine solution provides or high performance and scalability and may be implemented remotely as a large capacity server (i.e., in the cloud) or locally to a user. Most big data software running in a single instance mode has limitations in scalability when running on a many-core and large coherent shared memory system. A configuration and deployment technique using a multi-instance approach, which also includes visualization tools and business analytics software, maximizes system performance and resource utilization, reduces latency and provides scalability as needed, for end-user applications in the cloud.

    Abstract translation: 系统在大型,一致的共享内存多核计算系统上以多实例模式部署可视化工具,业务分析软件和大数据软件。 单机解决方案提供或高性能和可扩展性,并且可以远程实现为大容量服务器(即,在云中)或本地地向用户实现。 在单实例模式下运行的大多数数据软件在多核和大型一致的共享内存系统上运行时具有可扩展性的局限性。 使用多实例方法的配置和部署技术,其中还包括可视化工具和业务分析软件,可最大限度地提高系统性能和资源利用率,减少延迟并根据需要提供可扩展性,以便云中的最终用户应用程序。

    DEPLOYING BIG DATA SOFTWARE IN A MULTI-INSTANCE NODE
    8.
    发明申请
    DEPLOYING BIG DATA SOFTWARE IN A MULTI-INSTANCE NODE 有权
    在多个代码节点中部署大量数据软件

    公开(公告)号:US20140331239A1

    公开(公告)日:2014-11-06

    申请号:US14266758

    申请日:2014-04-30

    CPC classification number: G06F9/5016 G06F9/5027 G06F9/5055

    Abstract: A system for deploying big data software in a multi-instance node. The optimal CPU memory and core configuration for a single instance database is determined. After determining an optimal core-memory ratio for a single instance execution, the software is deployed in multi-instance mode on single machine by applying the optimal core-memory ratio for each of the instances. The multi-instance database may then be deployed and data may be loaded in parallel for the instances.

    Abstract translation: 用于在多实例节点中部署大数据软件的系统。 确定单个实例数据库的最佳CPU内存和核心配置。 在确定单个实例执行的最佳核心存储器比率之后,通过对每个实例应用最优核心存储器比率,在单机器上以多实例模式部署软件。 然后可以部署多实例数据库,并且可以为实例并行加载数据。

Patent Agency Ranking