System for producing remote sensing data from near earth orbit

    公开(公告)号:US10858309B2

    公开(公告)日:2020-12-08

    申请号:US16129210

    申请日:2018-09-12

    Applicant: Skeyeon, Inc.

    Abstract: A satellite system operates at altitudes between 180 km and 350 km relying on vehicles including an engine to counteract atmospheric drag to maintain near-constant orbit dynamics. The system operates at altitudes that are substantially lower than traditional satellites, reducing size, weight and cost of the vehicles and their constituent subsystems such as optical imagers, radars, and radio links. The system can include a large number of lower cost, mass, and altitude vehicles, enabling revisit times substantially shorter than previous satellite systems. The vehicles spend their orbit at low altitude, high atmospheric density conditions that have heretofore been virtually impossible to consider for stable orbits. Short revisit times at low altitudes enable near-real time imaging at high resolution and low cost. At such altitudes, the system has no impact on space junk issues of traditional LEO orbits, and is self-cleaning in that space junk or disabled craft will de-orbit.

    System for producing remote sensing data from near earth orbit

    公开(公告)号:US12258307B2

    公开(公告)日:2025-03-25

    申请号:US18519989

    申请日:2023-11-27

    Applicant: Skeyeon, Inc.

    Abstract: A satellite system operates at altitudes between 180 km and 350 km relying on vehicles including an engine to counteract atmospheric drag to maintain near-constant orbit dynamics. The system operates at altitudes that are substantially lower than traditional satellites, reducing size, weight and cost of the vehicles and their constituent subsystems such as optical imagers, radars, and radio links. The system can include a large number of lower cost, mass, and altitude vehicles, enabling revisit times substantially shorter than previous satellite systems. The vehicles spend their orbit at low altitude, high atmospheric density conditions that have heretofore been virtually impossible to consider for stable orbits. Short revisit times at low altitudes enable near-real time imaging at high resolution and low cost. At such altitudes, the system has no impact on space junk issues of traditional LEO orbits, and is self-cleaning in that space junk or disabled craft will de-orbit.

    SYSTEM FOR PRODUCING REMOTE SENSING DATA FROM NEAR EARTH ORBIT

    公开(公告)号:US20210078942A1

    公开(公告)日:2021-03-18

    申请号:US16953450

    申请日:2020-11-20

    Applicant: Skeyeon, Inc.

    Abstract: A satellite system operates at altitudes between 180 km and 350 km relying on vehicles including an engine to counteract atmospheric drag to maintain near-constant orbit dynamics. The system operates at altitudes that are substantially lower than traditional satellites, reducing size, weight and cost of the vehicles and their constituent subsystems such as optical imagers, radars, and radio links. The system can include a large number of lower cost, mass, and altitude vehicles, enabling revisit times substantially shorter than previous satellite systems. The vehicles spend their orbit at low altitude, high atmospheric density conditions that have heretofore been virtually impossible to consider for stable orbits. Short revisit times at low altitudes enable near-real time imaging at high resolution and low cost. At such altitudes, the system has no impact on space junk issues of traditional LEO orbits, and is self-cleaning in that space junk or disabled craft will de-orbit.

    System for producing remote sensing data from near earth orbit

    公开(公告)号:US10590068B2

    公开(公告)日:2020-03-17

    申请号:US15868794

    申请日:2018-01-11

    Applicant: Skeyeon, Inc.

    Abstract: A satellite system operates at altitudes between 180 km and 350 km relying on vehicles including an engine to counteract atmospheric drag to maintain near-constant orbit dynamics. The system operates at altitudes that are substantially lower than traditional satellites, reducing size, weight and cost of the vehicles and their constituent subsystems such as optical imagers, radars, and radio links. The system can include a large number of lower cost, mass, and altitude vehicles, enabling revisit times substantially shorter than previous satellite systems. The vehicles spend their orbit at low altitude, high atmospheric density conditions that have heretofore been virtually impossible to consider for stable orbits. Short revisit times at low altitudes enable near-real time imaging at high resolution and low cost. At such altitudes, the system has no impact on space junk issues of traditional LEO orbits, and is self-cleaning in that space junk or disabled craft will de-orbit.

    SYSTEM FOR PRODUCING REMOTE SENSING DATA FROM NEAR EARTH ORBIT

    公开(公告)号:US20190016672A1

    公开(公告)日:2019-01-17

    申请号:US16129210

    申请日:2018-09-12

    Applicant: Skeyeon, Inc.

    Abstract: A satellite system operates at altitudes between 180 km and 350 km relying on vehicles including an engine to counteract atmospheric drag to maintain near-constant orbit dynamics. The system operates at altitudes that are substantially lower than traditional satellites, reducing size, weight and cost of the vehicles and their constituent subsystems such as optical imagers, radars, and radio links. The system can include a large number of lower cost, mass, and altitude vehicles, enabling revisit times substantially shorter than previous satellite systems. The vehicles spend their orbit at low altitude, high atmospheric density conditions that have heretofore been virtually impossible to consider for stable orbits. Short revisit times at low altitudes enable near-real time imaging at high resolution and low cost. At such altitudes, the system has no impact on space junk issues of traditional LEO orbits, and is self-cleaning in that space junk or disabled craft will de-orbit.

    Satellite System
    10.
    发明申请

    公开(公告)号:US20210339890A1

    公开(公告)日:2021-11-04

    申请号:US17349078

    申请日:2021-06-16

    Applicant: Skeyeon, Inc.

    Abstract: A satellite system operates at altitudes between 100 and 350 km relying on vehicles including a self-sustaining ion engine to counteract atmospheric drag to maintain near-constant orbit dynamics. The system operates at altitudes that are substantially lower than traditional satellites, reducing size, weight and cost of the vehicles and their constituent subsystems such as optical imagers, radars, and radio links. The system can include a large number of lower cost, mass, and altitude vehicles, enabling revisit times substantially shorter than previous satellite systems. The vehicles spend their orbit at low altitude, high atmospheric density conditions that have heretofore been virtually impossible to consider for stable orbits. Short revisit times at low altitudes enable near-real time imaging at high resolution and low cost. At such altitudes, the system has no impact on space junk issues of traditional LEO orbits, and is self-cleaning in that space junk or disabled craft will de-orbit.

Patent Agency Ranking