Abstract:
A process for producing crystalline sodium bicarbonate, comprising: providing an aqueous sodium-bicarbonate containing liquor originating from a reactive crystallization step in which first sodium bicarbonate crystals are produced and recovered; feeding at least a portion of said aqueous sodium-bicarbonate containing liquor to a cooling crystallization unit to form second sodium bicarbonate crystals and produce a crystals slurry comprising the second sodium bicarbonate crystals; and withdrawing a portion of the crystals slurry from the cooling crystallization unit for the withdrawn second sodium bicarbonate crystals to be further processed. A portion of the second sodium bicarbonate crystals withdrawn from the cooling crystallization unit may be fed to a sodium bicarbonate reactive crystallization unit, to a caustic unit, or may be separated and dried. The reactive crystallization, separation and/or drying units where the second sodium bicarbonate crystals are further processed may be the same units where the first sodium bicarbonate crystals are processed.
Abstract:
A method for increasing the evaporation rate of an evaporative pond containing pond liquor comprising water and at least 1% by weight of sodium carbonate, said evaporative pond being in contact with an ambient air at an ambient air temperature of more than 0° C., the method comprising the following steps: feeding part of the pond liquor to a heat exchanger; heating the pond liquor in the heat exchanger with heat and producing a heated pond liquor; feeding the heated pond liquor into a spraying device at an operating temperature of at least 10° C. above the ambient air temperature; and spraying the heated pond liquor into an open area of the evaporative pond with the spraying device, so as to evaporate at least part of the water of the pond liquor when sprayed.
Abstract:
A method for treating a purge stream derived from a sodium carbonate, sesquicarbonate, wegsheiderite, or bicarbonate crystallizer,said purge stream comprising sodium carbonate and/or sodium bicarbonate and at least 1% by weight of sodium chloride and/or sodium sulfate, the method comprising: causticizing at least 50 mol. % of the sodium from sodium carbonate and/or sodium bicarbonate into a caustic solution and into a calcium carbonate mud with lime and water, separating the calcium carbonate mud from the caustic solution; concentrating the caustic solution by removing part of the water to obtain a concentrated caustic solution comprising at least 25% NaOH, and a crystallized solid comprising sodium carbonate and sodium chloride and/or sulfate, separating the crystallized solid from the concentrated caustic solution, said crystallized solid to be disposed of or to be further valorized, recycling part of the concentrated caustic solution to the sodium carbonate, sesquicarbonate, wegsheiderite, or bicarbonate crystallizer.
Abstract:
A method for producing a concentrated aqueous sodium hydroxide solution from a purge stream deriving from a sodium carbonate, or sesquicarbonate, or wegsheiderite crystallizer, or sodium bicarbonate crystallizer, said purge stream comprising sodium carbonate and/or bicarbonate, and at least 1% of sodium chloride or sodium sulfate and a soluble impurity from an ore deposit comprising at least one of the following elements: As, Ba, B, Ca, Co, K, Li, Mo, P, Pb, Se, Sn, Sr, Te, Tl, Ti, V, and W, to be purified, the method comprising: causticizing at least 50 mol. % of the sodium carbonate into a caustic solution and into a calcium carbonate mud with lime and water; separating the mud from the caustic solution; concentrating the caustic solution by removing part of the water to obtain a concentrated caustic solution comprising at least 25% NaOH, and a crystallized solid comprising sodium carbonate and sodium chloride and/or sulfate; and separating the crystallized solid from the concentrated caustic solution, said crystallized solid to be disposed of or to be further valorized.
Abstract:
A method for increasing the evaporation rate of an evaporative pond comprising a pond liquor comprising water and at least 1% by weight of sodium carbonate, said evaporative pond being in contact with an ambient air at an ambient air temperature of more than 0° C., the method comprising the following steps: feeding part of the pond liquor to a heat exchanger; heating the pond liquor in the heat exchanger with heat and producing a heated pond liquor; feeding the heated pond liquor into a spraying device at a temperature called hereafter ‘operating temperature’ of at least 10° C. above the ambient air temperature; and spraying the heated pond liquor into an open area of the evaporative pond with the spraying device, so as to evaporate at least part of the water of the pond liquor when sprayed.
Abstract:
A process for producing sodium bicarbonate from a sodium carbonate bearing stream (A) comprising at least 2% sodium chloride and/or sodium sulfate by weight, a part of such stream (A) being generated by a sodium carbonate crystallizer, comprising: a) mixing the stream (A) with part of a stream (B) to produce a stream (C); b) bicarbonating the stream (C) with a gas (D) comprising CO2 to produce an aqueous suspension (E) containing crystals (F) comprising sodium bicarbonate crystals; c) separating the aqueous suspension (E) to obtain crystals (F) comprising sodium bicarbonate crystals and an aqueous mother liquor (G); d) partly debicarbonating such liquor (G) and removing part of the water to obtain the stream (B) and an optional gas (H); e) recycling at least part of the stream (B) to step a); and f) removing the remainder of the stream (B) or part of the aqueous mother liquor (G) to be further processed.
Abstract:
Concentrated aqueous sodium hydroxide solution comprising: at least 25% by weight of NaOH, sodium chloride (NaCl) and/or sodium sulfate (Na2SO4), and one soluble impurity from a sodium carbonate or bicarbonate ore deposit, said soluble impurity being selected among: As, Ba, B, Ca, Co, K, Li, Mg, Mo, P, Pb, Se, Si, Sr, Te, Tl, Ti, V, W, and the soluble impurity being in specific concentrations ranges. And process for producing such concentrated aqueous sodium hydroxide solution by treating a purge stream comprising sodium carbonate or bicarbonate.
Abstract:
Process for recovering soda values from first and second soda deposits situated respectively in first and second underground cavities containing respectively first and second soda solutions, the second soda solution containing a higher concentration in sodium chloride and/or sodium sulfate than the first soda solution, the process comprising: extracting a stream of first soda solution from the first cavity; introducing the stream of first soda solution in a first process which produces first soda crystals and a first waste purge stream containing a higher concentration in sodium chloride and/or in sodium sulfate than the first soda solution; introducing at least part of the first waste purge stream in the second cavity; extracting a stream of second soda solution from the second cavity; and introducing the stream of second soda solution in a second process which produces second soda crystals which have a higher concentration in sodium chloride and/or sodium sulfate than the first soda crystals.
Abstract:
Process to produce sodium carbonate from an ore mineral comprising sodium bicarbonate, comprising: dissolving sodium carbonate particles having a mean diameter D50, measured by sieve analysis, less than 250 μm in a water solution; introducing the resulting production solution comprising sodium carbonate into less basic compartments of an electrodialyser comprising alternating less basic and more basic adjacent compartments separated from each other by cationic membranes; producing a solution comprising sodium hydroxide into the more basic compartments; extracting the solution comprising sodium hydroxide from the more basic compartments of the electrodialyser and used to constitute a reaction solution; and putting the reaction solution into contact with the mineral ore comprising sodium bicarbonate in order to form a produced solution comprising sodium carbonate.
Abstract:
A solution mining method for recovering alkali values from a cavity of an underground ore formation comprising trona and/or wegscheiderite; a manufacturing process using such method to make sodium-based product(s); and a sodium-based product obtained therefrom. The method comprises: an ore dissolution phase (a) in which the incongruent double-salt in trona and/or wegscheiderite is dissolved from an ore face in a first solvent, and a cavity cleaning phase (b) in which sodium bicarbonate deposited on the ore face during the dissolution phase (a) is dissolved into a second aqueous solvent having a higher pH, hydroxide content, and/or temperature and is partly or completely converted in situ to sodium carbonate. The method further comprises withdrawing a liquor resulting from either phase to the ground surface, optionally recycling some liquor to the cavity; and passing some liquor through a crystallizer, a reactor, and/or an electrodialyser, to form at least one sodium-based product which is recovered.