Abstract:
A prosthetic joint device includes a foot portion and a main body pivotally coupled to the foot portion at a first joint. A first compliant member is coupled to the main body and foot portion. A first clutch is coupled to the first compliant member. An actuator is coupled to the first clutch to lock and unlock the first clutch and engage and disengage the first compliant member. A control system is coupled to the actuator to control the actuator based on a gait activity.The first clutch is locked to engage the first compliant member. A second compliant member is coupled to the main body and foot portion. A sensor is coupled to the prosthetic joint device to measure a physical state of the prosthetic joint device. The engagement and disengagement of the first compliant member is timed based on the physical state of the prosthetic joint device.
Abstract:
A prosthetic joint device includes a foot portion and a main body pivotally coupled to the foot portion at a first joint. A first compliant member is coupled to the main body and foot portion. A first clutch is coupled to the first compliant member. An actuator is coupled to the first clutch to lock and unlock the first clutch and engage and disengage the first compliant member. A control system is coupled to the actuator to control the actuator based on a gait activity. The first clutch is locked to engage the first compliant member. A second compliant member is coupled to the main body and foot portion. A sensor is coupled to the prosthetic joint device to measure a physical state of the prosthetic joint device. The engagement and disengagement of the first compliant member is timed based on the physical state of the prosthetic joint device.
Abstract:
A prosthetic joint device includes a foot portion and a main body pivotally coupled to the foot portion at a first joint. A first compliant member is coupled to the main body and foot portion. A first clutch is coupled to the first compliant member. An actuator is coupled to the first clutch to lock and unlock the first clutch and engage and disengage the first compliant member. A control system is coupled to the actuator to control the actuator based on a gait activity. The first clutch is locked to engage the first compliant member. A second compliant member is coupled to the main body and foot portion. A sensor is coupled to the prosthetic joint device to measure a physical state of the prosthetic joint device. The engagement and disengagement of the first compliant member is timed based on the physical state of the prosthetic joint device.
Abstract:
A joint torque augmentation system includes linkage assembly configured to couple to a user. Linkage assembly includes a unidirectional link and a device joint. The linkage assembly is worn by a user or is configured to couple to footwear. An actuator is coupled to the linkage assembly to provide a torque at a joint of the user. A sensor is coupled to the user to measure a position of the user. A control system is coupled to the sensor and actuator. A phase of gait for the user is determined by the control system based on the position measured by the sensor. The actuator produces a tension force on the linkage assembly during a first phase of gait. A compliant element is coupled between the actuator and linkage assembly. The compliant element is tuned based on a load carried by the user.
Abstract:
A prosthetic joint device includes a foot portion and a main body pivotally coupled to the foot portion at a first joint. A first compliant member is coupled to the main body and foot portion. A first clutch is coupled to the first compliant member. An actuator is coupled to the first clutch to lock and unlock the first clutch and engage and disengage the first compliant member. A control system is coupled to the actuator to control the actuator based on a gait activity.The first clutch is locked to engage the first compliant member. A second compliant member is coupled to the main body and foot portion. A sensor is coupled to the prosthetic joint device to measure a physical state of the prosthetic joint device. The engagement and disengagement of the first compliant member is timed based on the physical state of the prosthetic joint device.
Abstract:
A joint torque augmentation system includes linkage assembly configured to couple to a user. Linkage assembly includes a unidirectional link and a device joint. The linkage assembly is worn by a user or is configured to couple to footwear. An actuator is coupled to the linkage assembly to provide a torque at a joint of the user. A sensor is coupled to the user to measure a position of the user. A control system is coupled to the sensor and actuator. A phase of gait for the user is determined by the control system based on the position measured by the sensor. The actuator produces a tension force on the linkage assembly during a first phase of gait. A compliant element is coupled between the actuator and linkage assembly. The compliant element is tuned based on a load carried by the user.