Abstract:
A method for printing a three-dimensional part with an additive manufacturing system, which includes providing a part material that compositionally has one or more semi-crystalline polymers and one or more secondary materials that are configured to retard crystallization of the one or more semi-crystalline polymers, where the one or more secondary materials are substantially miscible with the one or more semi-crystalline polymers. The method also includes melting the part material in the additive manufacturing system, forming at least a portion of a layer of the three-dimensional part from the melted part material in a build environment, and maintaining the build environment at an annealing temperature that is between a glass transition temperature of the part material and a cold crystallization temperature of the part material.
Abstract:
A method for printing a three-dimensional part with an additive manufacturing system includes providing a consumable feedstock material comprising a semi-crystalline polymer containing one or more secondary materials, wherein the consumable feedstock material has a process window in which crystalline kinetics are either accelerated or retarded. The consumable feedstock material is melted in the additive manufacturing system. At least a portion of the three-dimensional part from the melted consumable feedstock material in a build environment maintained within the process window.
Abstract:
A polymeric material includes a semi-crystalline polymer and a secondary material wherein when the secondary material is combined with the semi-crystalline polymer to form a blend having an enthalpy that is between about 2 J/g heat of fusion and about 80% of the heat of fusion of the neat semi-crystalline material, as measured by differential scanning calorimetry (DSC) when cooling from a melting temperature to a hot crystalline temperature at a rate of 10° C./min.
Abstract:
A method for printing a three-dimensional part with an additive manufacturing system, which includes providing a part material that compositionally has one or more semi-crystalline polymers and one or more secondary materials that are configured to retard crystallization of the one or more semi-crystalline polymers, where the one or more secondary materials are substantially miscible with the one or more semi-crystalline polymers. The method also includes melting the part material in the additive manufacturing system, forming at least a portion of a layer of the three-dimensional part from the melted part material in a build environment, and maintaining the build environment at an annealing temperature that is between a glass transition temperature of the part material and a cold crystallization temperature of the part material.
Abstract:
A consumable material for use in an additive manufacturing system, the consumable filament comprising a polyamide blend of at least one semi-crystalline polyamide, and at least one amorphous polyamide that is substantially miscible with the at least one semi-crystalline polyamide, and a physical geometry configured to be received by the additive manufacturing system for printing a three-dimensional part from the consumable material in a layer-by-layer manner using an additive manufacturing technique. The consumable material is preferably capable of printing three-dimensional parts having good part strengths and ductilities, and low curl.
Abstract:
A method for printing a three-dimensional part with an additive manufacturing system, which includes providing a part material that compositionally has one or more semi-crystalline polymers and one or more secondary materials that are configured to retard crystallization of the one or more semi-crystalline polymers, where the one or more secondary materials are substantially miscible with the one or more semi-crystalline polymers. The method also includes melting the part material in the additive manufacturing system, forming at least a portion of a layer of the three-dimensional part from the melted part material in a build environment, and maintaining the build environment at an annealing temperature that is between a glass transition temperature of the part material and a cold crystallization temperature of the part material.
Abstract:
A method for printing a three-dimensional part with an additive manufacturing system, which includes providing a part material that compositionally has one or more semi-crystalline polymers and one or more secondary materials that are configured to retard crystallization of the one or more semi-crystalline polymers, where the one or more secondary materials are substantially miscible with the one or more semi-crystalline polymers. The method also includes melting the part material in the additive manufacturing system, forming at least a portion of a layer of the three-dimensional part from the melted part material in a build environment, and maintaining the build environment at an annealing temperature that is between a glass transition temperature of the part material and a cold crystallization temperature of the part material.
Abstract:
A support material for use in an additive manufacturing system to print a support structure for a three-dimensional part. The support material includes a base resin that is substantially miscible with a part material used to print the three-dimensional part, and has a glass transition temperature within about 10° C. of a glass transition temperature of the part material. The support material also includes a dispersed resin that is substantially immiscible with the base resin, where the base resin and the dispersed resin are each thermally stable for use in the additive manufacturing system in coordination with the part material.
Abstract:
A polymeric material includes a semi-crystalline polymer and a secondary material wherein when the secondary material is combined with the semi-crystalline polymer to form a blend having an enthalpy that is between about 2 J/g heat of fusion and about 80% of the heat of fusion of the neat semi-crystalline material, as measured by differential scanning calorimetry (DSC) when cooling from a melting temperature to a hot crystalline temperature at a rate of 10° C./min.
Abstract:
Part materials for additive manufacturing applications include materials with a fluoropolymer processing aid (material-FP). These materials include one or more thermoplastic polymers and one or more fluoropolymers as a processing aid. The material-FP is used to build parts with additive manufacturing systems. Parts built using material-FP have improved physical properties including improved strength in the z-direction of the parts. Composite systems such as reinforced filaments with the material-FP also have a higher density.