Abstract:
Patient support apparatuses, such as beds, cots, stretchers, recliners, or the like, include control systems with one or more image, radar, and/or laser sensors to detect objects and determine if a likelihood of collision exists. If so, the control system controls the speed and steering of the patient support apparatus in order to reduce the likelihood of collision. The control system may be adapted to autonomously drive the patient support apparatus, to transmit a message to a remote device indicating whether it is occupied by a patient or not, and/or to transmit its route to the remote device. The remote device may determine an estimate of a time of arrival of the patient support apparatus at a particular destination and/or determine a distance of the patient support apparatus from the particular destination.
Abstract:
Patient support apparatuses, such as beds, cots, stretchers, recliners, or the like, include control systems with one or more image, radar, and/or laser sensors to detect objects and determine if a likelihood of collision exists. If so, the control system controls the speed and steering of the patient support apparatus in order to reduce the likelihood of collision. The control system may be adapted to autonomously drive the patient support apparatus, to transmit a message to a remote device indicating whether it is occupied by a patient or not, and/or to transmit its route to the remote device. The remote device may determine an estimate of a time of arrival of the patient support apparatus at a particular destination and/or determine a distance of the patient support apparatus from the particular destination.
Abstract:
A thermal control unit for delivering temperature-controlled fluid to one or more patient therapy devices (e.g. pads, blankets, etc.) that are in contact with a patient is disclosed. The thermal control unit allows multiple patient therapy devices to be fluidly coupled thereto and to individually monitor the temperatures, flow rates, and/or connections/disconnections of the patient therapy devices. A user interface enables a user to designate outlet ports to the therapy devices as active or inactive, and the control unit provides notifications to the user if any of the active ports experience an undesired condition, or if a patient therapy device is connected to an inactive port. The user interface further allows the user to designate one of multiple patient temperature probes as a primary probe. The primary probe is used to control the temperature of the fluid circulating through the control unit.
Abstract:
Patient support apparatuses, such as beds, cots, stretchers, recliners, or the like, include control systems with one or more image, radar, and/or laser sensors to detect objects and determine if a likelihood of collision exists. If so, the control system controls the speed and steering of the patient support apparatus in order to reduce the likelihood of collision. The control system may be adapted to autonomously drive the patient support apparatus, to transmit a message to a remote device indicating whether it is occupied by a patient or not, and/or to transmit its route to the remote device. The remote device may determine an estimate of a time of arrival of the patient support apparatus at a particular destination and/or determine a distance of the patient support apparatus from the particular destination.
Abstract:
Patient support apparatuses, such as beds, cots, stretchers, recliners, or the like, include control systems with one or more image, radar, and/or laser sensors to detect objects and determine if a likelihood of collision exists. If so, the control system controls the speed and steering of the patient support apparatus in order to reduce the likelihood of collision. The control system may be adapted to autonomously drive the patient support apparatus, to transmit a message to a remote device indicating whether it is occupied by a patient or not, and/or to transmit its route to the remote device. The remote device may determine an estimate of a time of arrival of the patient support apparatus at a particular destination and/or determine a distance of the patient support apparatus from the particular destination.
Abstract:
A thermal control unit for delivering temperature-controlled fluid to one or more patient therapy devices (e.g. pads, blankets, etc.) that are in contact with a patient is disclosed. The thermal control unit allows multiple patient therapy devices to be fluidly coupled thereto and to individually monitor the temperatures, flow rates, and/or connections/disconnections of the patient therapy devices. A user interface enables a user to designate outlet ports to the therapy devices as active or inactive, and the control unit provides notifications to the user if any of the active ports experience an undesired condition, or if a patient therapy device is connected to an inactive port. The user interface further allows the user to designate one of multiple patient temperature probes as a primary probe. The primary probe is used to control the temperature of the fluid circulating through the control unit.
Abstract:
Patient support apparatuses, such as beds, cots, stretchers, recliners, or the like, include control systems with one or more image, radar, and/or laser sensors to detect objects and determine if a likelihood of collision exists. If so, the control system controls the speed and steering of the patient support apparatus in order to reduce the likelihood of collision. The control system may be adapted to autonomously drive the patient support apparatus, to transmit a message to a remote device indicating whether it is occupied by a patient or not, and/or to transmit its route to the remote device. The remote device may determine an estimate of a time of arrival of the patient support apparatus at a particular destination and/or determine a distance of the patient support apparatus from the particular destination.
Abstract:
A thermal control unit for delivering temperature-controlled fluid to one or more patient therapy devices (e.g. pads, blankets, etc.) that are in contact with a patient is disclosed. The thermal control unit allows multiple patient therapy devices to be fluidly coupled thereto and to individually monitor the temperatures, flow rates, and/or connections/disconnections of the patient therapy devices. A user interface enables a user to designate outlet ports to the therapy devices as active or inactive, and the control unit provides notifications to the user if any of the active ports experience an undesired condition, or if a patient therapy device is connected to an inactive port. The user interface further allows the user to designate one of multiple patient temperature probes as a primary probe. The primary probe is used to control the temperature of the fluid circulating through the control unit.
Abstract:
A thermal control unit for delivering temperature-controlled fluid to one or more patient therapy devices (e.g. pads, blankets, etc.) that are in contact with a patient is disclosed. The thermal control unit allows multiple patient therapy devices to be fluidly coupled thereto and to individually monitor the temperatures, flow rates, and/or connections/disconnections of the patient therapy devices. A user interface enables a user to designate outlet ports to the therapy devices as active or inactive, and the control unit provides notifications to the user if any of the active ports experience an undesired condition, or if a patient therapy device is connected to an inactive port. The user interface further allows the user to designate one of multiple patient temperature probes as a primary probe. The primary probe is used to control the temperature of the fluid circulating through the control unit.
Abstract:
A thermal control unit for delivering temperature-controlled fluid to one or more patient therapy devices (e.g. pads, blankets, etc.) that are in contact with a patient is disclosed. The thermal control unit allows multiple patient therapy devices to be fluidly coupled thereto and to individually monitor the temperatures, flow rates, and/or connections/disconnections of the patient therapy devices. A user interface enables a user to designate outlet ports to the therapy devices as active or inactive, and the control unit provides notifications to the user if any of the active ports experience an undesired condition, or if a patient therapy device is connected to an inactive port. The user interface further allows the user to designate one of multiple patient temperature probes as a primary probe. The primary probe is used to control the temperature of the fluid circulating through the control unit.