Abstract:
A method for validating received positional data in vehicle surveillance applications wherein vehicles transmit positional data indicating their own position to surrounding vehicles. A a radio direction finding antenna arrangement of a receiving unit receives a signal carrying positional data indicating an alleged position of a vehicle, transmitted from a radio source. The bearing from the receiving unit to the radio source is estimated utilizing the radio direction finding antenna arrangement and the received signal. The distance between the receiving unit and the radio source is estimated based on the time of flight for a signal travelling there between at known speed. An estimated position of the radio source is calculated based on the estimated bearing and the estimated distance. A deviation value indicating the deviation/coincidence between the alleged position of a vehicle is determined according to the received positional data and the estimated position of the radio source.
Abstract:
A method for validating positional data in vehicle surveillance applications wherein vehicles transmit positional data indicating their own position to surrounding vehicles using a data link over which a transmission is initiated at a given transmission point in time that is known by all users of the data link. A signal transmitted from a radio source over the data link is received at a receiving unit. The signal carries positional data indicating an alleged position of a vehicle. The distance between the receiving unit and the radio source is estimated based on the time of flight and the propagation velocity of the received signal. The time of flight is determined based on the time elapsed from the transmission point in time of the signal to the time of reception of at least a first part of the signal. A deviation value is determined. The deviation value indicates the difference between the distance to the position of a vehicle according to the received positional data and the estimated distance to the radio source.
Abstract:
A method for validating received positional data in vehicle surveillance applications wherein vehicles transmit positional data indicating their own position to surrounding vehicles. A a radio direction finding antenna arrangement of a receiving unit receives a signal carrying positional data indicating an alleged position of a vehicle, transmitted from a radio source. The bearing from the receiving unit to the radio source is estimated utilizing the radio direction finding antenna arrangement and the received signal. The distance between the receiving unit and the radio source is estimated based on the time of flight for a signal travelling there between at known speed. An estimated position of the radio source is calculated based on the estimated bearing and the estimated distance. A deviation value indicating the deviation/coincidence between the alleged position of a vehicle is determined according to the received positional data and the estimated position of the radio source.
Abstract:
A torsion socket includes a longitudinally extending torsion shaft and a nut socket fashioned at one end of the torsion shaft. The nut socket has a recess for receiving a wheel nut to be tightened about a threaded bolt. A driver head is integrally fashioned with the other end of the torsion shaft and has a recess which is square in cross section for engaging the drive shaft of an impact wrench. Rotation indicia are fashioned on an exterior portion of the nut socket to permit an operator who is tightening a wheel nut to facilely visually determine when the torsion shaft relieves the impact torque from the nut socket and when the nut socket stops turning, preventing overtightening of the wheel nut beyond design specification in the secondary market.