Abstract:
An optical modulator includes: first and second optical waveguides formed of an electro-optic material film on a substrate so as to have a ridge shape and to be disposed adjacent to each other; a buffer layer covering at least the upper surfaces of the first and second optical waveguides; and first and second signal electrodes provided above the buffer layer. The first and second signal electrodes have, respectively, first and second lower layer parts opposite, respectively, to the first and second optical waveguides through the buffer layer; and first and second upper layer parts provided, respectively, above the first and second lower layer parts. Widths of the lower surfaces of the first and second lower layer parts are smaller than widths of the first and second upper layer parts.
Abstract:
Disclosed herein is an optical waveguide element that includes a substrate and a waveguide layer formed on the substrate and comprising lithium niobate. The waveguide layer has a slab part having a predetermined thickness and a ridge part protruding from the slab part. The maximum thickness of the slab part is 0.05 times or more and less than 0.4 times a wavelength of a light propagating in the ridge part.
Abstract:
To provide an optical modulation element whereby reduced drive voltage and suppression of DC drift can be obtained at the same time. An optical modulation element includes: a substrate; and an optical waveguide formed of an electrooptic material film formed on the substrate and having a ridge part which is a protruding portion, and a slab part having a smaller film thickness than the ridge part 11r. The optical waveguide includes a first waveguide part having a first ridge width and a first slab film thickness and to which an RF signal is applied, and a second waveguide part having a second ridge width and a second slab film thickness different from the first slab film thickness and to which a DC bias is applied.
Abstract:
An electro-optic device is provided with a Mach-Zehnder optical waveguide including at least one linear section and at least one curved section and a differential RF signal electrode provided along the Mach-Zehnder optical waveguide. Optical input/output ports of the Mach-Zehnder optical waveguide are provided at one end side in a first direction in which the linear section extends. The differential RF signal electrode is provided in both the linear and curved sections.
Abstract:
Disclosed herein is an optical waveguide element that includes a substrate and a waveguide layer formed on the substrate and comprising lithium niobate. The waveguide layer has a slab part having a predetermined thickness and a ridge part protruding from the slab part. The maximum thickness of the slab part is 0.05 times or more and less than 0.4 times a wavelength of a light propagating in the ridge part.
Abstract:
An object of the present invention is to provide a single drive type optical modulator having good high-frequency characteristics and reduced wavelength chirp of the modulated light. An optical modulator 100 is provided with a Mach-Zehnder optical waveguide 10 including first and second optical waveguides 10a, 10b, a buffer layer 4 covering the first and second optical waveguides 10a, 10b, and an electrode layer 6 including first and second ground electrodes 8, 9 and a signal electrode 7 positioned between the first and second ground electrodes 8, 9 in a plan view, the signal electrode 7 has a first lower surface S11 covering the first optical waveguide 10a through the buffer layer 4, the first ground electrode 8 has a first lower surface S21 covering the second optical waveguide 10b through the buffer layer 4 and a second lower surface S22 positioned above the first lower surface S21, and a gap G3 between the signal electrode 7 and the second ground electrode 9 is larger than a gap G2 between the signal electrode 7 and the first ground electrode 8.
Abstract:
A single drive type optical modulator has good high-frequency characteristics and reduced wavelength chirp of the modulated light. An optical modulator is provided with a Mach-Zehnder optical waveguide including first and second optical waveguides, a buffer layer covering the first and second optical waveguides, and an electrode layer including first and second ground electrodes and a signal electrode positioned between the first and second ground electrodes in a plan view. The signal electrode has a first lower surface covering the first optical waveguide through the buffer layer, the first ground electrode has a first lower surface covering the second optical waveguide through the buffer layer and a second lower surface positioned above the first lower surface, and a gap between the signal electrode and the second ground electrode that is larger than a gap between the signal electrode and the first ground electrode.
Abstract:
Disclosed herein is an optical waveguide element that includes a substrate and a waveguide layer formed on the substrate and comprising lithium niobate. The waveguide layer has a slab part having a predetermined thickness and a ridge part protruding from the slab part. The maximum thickness of the slab part is 0.05 times or more and less than 0.4 times a wavelength of a light propagating in the ridge part.
Abstract:
To provide an optical modulation element capable of suppressing electrode loss at a low frequency of 50 GHz or less, and suppressing radiation loss at a high frequency of 50 GHz or more. An optical modulation element comprises: a substrate; and at least one interaction part provided on the substrate. The interaction part includes: first and second optical waveguides formed adjacent to each other on the substrate; and first and second signal electrodes provided so as to oppose the first and second optical waveguides respectively. o ground electrode is provided in a nearby region of the interaction part, and a ground electrode is provided in the vicinity of at least one of an input part and a terminal part electrically connected to each of the first and second signal electrodes.
Abstract:
To prevent deterioration in an extinction ratio due to asymmetry between a pair of optical waveguides. An optical modulator has a Mach-Zehnder optical waveguide including mutually parallel first and second waveguides and a signal electrode for controlling the phase of light propagating in the Mach-Zehnder optical waveguide. The first and second waveguides have a first section in which the second waveguide has a line width smaller than that of the first waveguide and a second section in which the first waveguide has a line width smaller than that of the second waveguide. The first section and the second section are replaced with each other in curved parts.