Abstract:
A system generating an electrical signal based on at least one physical quantity, includes sensor units each generating an individual electrical signal in response to the at least one physical quantity, a selecting unit selecting a first number of sensor units from the sensor units and outputting a first combined electrical signal based on the first number of sensor units, and a calibrating unit determining a second number of sensor units to be selected based on the first combined electrical signal.
Abstract:
A circuit includes a timer to count edges of a clock from an initial count value to a terminal count value and to output a timer signal responsive to the terminal count value being reached. A random number generator circuit generates a plurality of random number values. Each generated random number value is sequentially loaded into the timer as one of the initial count value or the terminal count value. A capacitive sensor circuit determines, responsive to receipt of a plurality of timer signals from the timer, a touch event of a capacitive touch sensor.
Abstract:
A circuit includes a timer to count edges of a clock from an initial count value to a terminal count value and to output a timer signal responsive to the terminal count value being reached. A random number generator circuit generates a plurality of random number values. Each generated random number value is sequentially loaded into the timer as one of the initial count value or the terminal count value. A capacitive sensor circuit determines, responsive to receipt of a plurality of timer signals from the timer, a touch event of a capacitive touch sensor.
Abstract:
A system generating an electrical signal based on at least one physical quantity, includes sensor units each generating an individual electrical signal in response to the at least one physical quantity, a selecting unit selecting a first number of sensor units from the sensor units and outputting a first combined electrical signal based on the first number of sensor units, and a calibrating unit determining a second number of sensor units to be selected based on the first combined electrical signal.
Abstract:
A system generating an electrical signal based on at least one physical quantity, includes sensor units each generating an individual electrical signal in response to the at least one physical quantity, a selecting unit selecting a first number of sensor units from the sensor units and outputting a first combined electrical signal based on the first number of sensor units, and a calibrating unit determining a second number of sensor units to be selected based on the first combined electrical signal.
Abstract:
A system generating an electrical signal based on at least one physical quantity, includes sensor units each generating an individual electrical signal in response to the at least one physical quantity, a selecting unit selecting a first number of sensor units from the sensor units and outputting a first combined electrical signal based on the first number of sensor units, and a calibrating unit determining a second number of sensor units to be selected based on the first combined electrical signal.
Abstract:
A circuit includes a timer to count edges of a clock from an initial count value to a terminal count value and to output a timer signal responsive to the terminal count value being reached. A random number generator circuit generates a plurality of random number values. Each generated random number value is sequentially loaded into the timer as one of the initial count value or the terminal count value. A capacitive sensor circuit determines, responsive to receipt of a plurality of timer signals from the timer, a touch event of a capacitive touch sensor.
Abstract:
In an embodiment of the invention, a method is provided for isolating a ferroelectric memory from a power supply during a write-back cycle or a write cycle of the ferroelectric memory. After it is determined that a write-back cycle or a write cycle will occur in the ferroelectric memory, the power supply is electrically disconnected from the ferroelectric memory before a write-back cycle or a write cycle occurs. Energy during the write-back cycle or the write cycle is provided to the ferroelectric memory by one or more capacitors in this embodiment. After the write-back cycle or the write cycle has ended, the power supply is electrically connected to the ferroelectric memory and the capacitors.