Abstract:
An energy harvester apparatus, system and method. A cantilevered beam resonator includes a cantilever beam and a base defined by the ends of the cantilever beam. The cantilevered beam resonator further includes a piezoelectric transducer composed of one or more piezoelectric components. The piezoelectric transducer is generally mounted beneath the base of the cantilevered beam resonator. In some example embodiments, the piezoelectric component can be configured in a split electrode configuration composed of a single split arrangement or more than one split (e.g., two splits, three splits, four splits, and so on).
Abstract:
An aerodynamic or hydrodynamic wall surface has an array of fibrillar structures disposed on and extending from the wall surface, wherein each fibrillar structure comprises a stalk and a tip. The stalk has a first end and a second end, wherein the first end is attached to the wall surface, and the stalk is oriented with respect to the wall surface at a stalk angle between approximately 1 degrees and 179 degrees. The tip has a first side and a second side, wherein the first side is attached proximate to the second end of the stalk, the tip has a larger cross-sectional area than the stalk, and the second side comprises a substantially planar surface that is oriented with respect to the stalk at a tip angle between approximately 0 degrees and 90 degrees.
Abstract:
An aerodynamic or hydrodynamic wall surface has an array of fibrillar structures disposed on and extending from the wall surface, wherein each fibrillar structure comprises a stalk and a tip. The stalk has a first end and a second end, wherein the first end is attached to the wall surface, and the stalk is oriented with respect to the wall surface at a stalk angle between approximately 1 degrees and 179 degrees. The tip has a first side and a second side, wherein the first side is attached proximate to the second end of the stalk, the tip has a larger cross-sectional area than the stalk, and the second side comprises a substantially planar surface that is oriented with respect to the stalk at a tip angle between approximately 0 degrees and 90 degrees.
Abstract:
A method, system, and apparatus for a fibrillar adhesion device comprises forming a stem mold, generating an array of at least one stems using the stem mold, forming a cap mold, generating an array of at least one caps using the cap mold, adhering the array of at least one stems to the array of at least one caps, and removing the cap mold wherein the resulting system comprise an array of at least one fibrillar adhesive structures.
Abstract:
A coating apparatus for the reduction of aerodynamic noise and vibrations. The coating apparatus is configured to include a group of fibrillar structures, wherein each fibrillar structure is configured with a diverging tip so that the coating reduces the size of and shifts downstream, a separation bubble, and modulates large-scale recirculating motion. Each fibrillar structure can be configured as a cylindrical micropillar. The group of fibrillar structures can be configured as a group of uniformly distributed cylindrical micropillars (e.g., one or more micropillar arrays). The surface coating is effective in reducing the separation bubble and displacing the separation bubble downstream. The coating facilitates a reduction in noise (e.g., aerodynamic noise) and vibrations due to the reduction in the size of the separation bubble.
Abstract:
A coating apparatus for the reduction of aerodynamic noise and vibrations. The coating apparatus is configured to include a group of fibrillar structures, wherein each fibrillar structure is configured with a diverging tip so that the coating reduces the size of and shifts downstream, a separation bubble, and modulates large-scale recirculating motion. Each fibrillar structure can be configured as a cylindrical micropillar. The group of fibrillar structures can be configured as a group of uniformly distributed cylindrical micropillars (e.g., one or more micropillar arrays). The surface coating is effective in reducing the separation bubble and displacing the separation bubble downstream. The coating facilitates a reduction in noise (e.g., aerodynamic noise) and vibrations due to the reduction in the size of the separation bubble.
Abstract:
A method, system, and apparatus for a fibrillar adhesion device comprises forming a stem mold, generating an array of at least one stems using the stem mold, forming a cap mold, generating an array of at least one caps using the cap mold, adhering the array of at least one stems to the array of at least one caps, and removing the cap mold wherein the resulting system comprise an array of at least one fibrillar adhesive structures.
Abstract:
A coating apparatus for the reduction of aerodynamic noise and vibrations. The coating apparatus is configured to include a group of fibrillar structures, wherein each fibrillar structure is configured with a diverging tip so that the coating reduces the size of and shifts downstream, a separation bubble, and modulates large-scale recirculating motion. Each fibrillar structure can be configured as a cylindrical micropillar. The group of fibrillar structures can be configured as a group of uniformly distributed cylindrical micropillars (e.g., one or more micropillar arrays). The surface coating is effective in reducing the separation bubble and displacing the separation bubble downstream. The coating facilitates a reduction in noise (e.g., aerodynamic noise) and vibrations due to the reduction in the size of the separation bubble.
Abstract:
An energy harvester apparatus, system and method. A cantilevered beam resonator includes a cantilever beam and a base defined by the ends of the cantilever beam. The cantilevered beam resonator further includes a piezoelectric transducer composed of one or more piezoelectric components. The piezoelectric transducer is generally mounted beneath the base of the cantilevered beam resonator. In some example embodiments, the piezoelectric component can be configured in a split electrode configuration composed of a single split arrangement or more than one split (e.g., two splits, three splits, four splits, and so on).