Abstract:
A device for stimulating at least one cranial nerve and/or spinal nerve is described. The device includes a vibratory motor, and an earpiece, wherein the earpiece is molded substantially to fit within the external ear canal and contacting the concha of a subject's ear. The present invention provides a method of reducing migraine headache, trigeminal neuropathy pain, normalize breathing, normalize blood pressure, induce sleep, increase salivation, improve vertigo, nausea, and visual dysfunction. A method for non invasive neuromodulation includes the steps of positioning a vibratory earpiece within an external ear canal of a subject, applying vibrational energy through the vibratory earpiece to stimulate mechanoreceptors of sensory fibers on cranial nerves 5, 7, 9 and 10, and cervical nerves C2 and C3, and regulating the subject's breathing and blood pressure simultaneously based on the stimulation. Further, the present invention provides a method for treating sleep-disturbed breathing and autonomic disorders.
Abstract:
A device for stimulating at least one cranial nerve and/or spinal nerve is described. The device includes a vibratory motor, and an earpiece, wherein the earpiece is molded substantially to fit within the external ear canal and contacting the concha of a subject's ear. A method of reducing migraine headache and trigeminal neuropathy pain is also described. The method includes positioning a vibratory earpiece within an ear of a subject, applying vibrational energy to at least a portion of the skin of at least one of the auditory canal, auricle and concha of the ear, thereby stimulating at least one sensory fiber of at least one of cranial nerve 5, cranial nerve 7, cranial nerve 9, cranial nerve 10, spinal nerve C2, and spinal nerve C3. A method to normalize breathing, normalize blood pressure, induce sleep, increase salivation, and improve vertigo, nausea, and visual dysfunction accompanying migraine is also described.
Abstract:
A device for stimulating at least one cranial nerve and/or spinal nerve is described. The device includes a vibratory motor, and an earpiece, wherein the earpiece is molded substantially to fit within the external ear canal and contacting the concha of a subject's ear. A method of reducing migraine headache and trigeminal neuropathy pain is also described. The method includes positioning a vibratory earpiece within an ear of a subject, applying vibrational energy to at least a portion of the skin of at least one of the auditory canal, auricle and concha of the ear, thereby stimulating at least one sensory fiber of at least one of cranial nerve 5, cranial nerve 7, cranial nerve 9, cranial nerve 10, spinal nerve C2, and spinal nerve C3. A method to normalize breathing, normalize blood pressure, induce sleep, increase salivation, and improve vertigo, nausea, and visual dysfunction accompanying migraine is also described.
Abstract:
A device for stimulating at least one cranial nerve and/or spinal nerve is described. The device includes a vibratory motor, and an earpiece, wherein the earpiece is molded substantially to fit within the external ear canal and contacting the concha of a subject's ear. A method of reducing migraine headache and trigeminal neuropathy pain is also described. The method includes positioning a vibratory earpiece within an ear of a subject, applying vibrational energy to at least a portion of the skin of at least one of the auditory canal, auricle and concha of the ear, thereby stimulating at least one sensory fiber of at least one of cranial nerve 5, cranial nerve 7, cranial nerve 9, cranial nerve 10, spinal nerve C2, and spinal nerve C3. A method to normalize breathing, normalize blood pressure, induce sleep, increase salivation, and improve vertigo, nausea, and visual dysfunction accompanying migraine is also described.
Abstract:
A device for stimulating at least one cranial nerve and/or spinal nerve is described. The device includes a vibratory motor, and an earpiece, wherein the earpiece is molded substantially to fit within the external ear canal and contacting the concha of a subject's ear. A method of reducing migraine headache and trigeminal neuropathy pain is also described. The method includes positioning a vibratory earpiece within an ear of a subject, applying vibrational energy to at least a portion of the skin of at least one of the auditory canal, auricle and concha of the ear, thereby stimulating at least one sensory fiber of at least one of cranial nerve 5, cranial nerve 7, cranial nerve 9, cranial nerve 10, spinal nerve C2, and spinal nerve C3. A method to normalize breathing, normalize blood pressure, induce sleep, increase salivation, and improve vertigo, nausea, and visual dysfunction accompanying migraine is also described.
Abstract:
A device for stimulating at least one cranial nerve and/or spinal nerve is described. The device includes a vibratory motor, and an earpiece, wherein the earpiece is molded substantially to fit within the external ear canal and contacting the concha of a subject's ear. A method of reducing migraine headache and trigeminal neuropathy pain is also described. The method includes positioning a vibratory earpiece within an ear of a subject, applying vibrational energy to at least a portion of the skin of at least one of the auditory canal, auricle and concha of the ear, thereby stimulating at least one sensory fiber of at least one of cranial nerve 5, cranial nerve 7, cranial nerve 9, cranial nerve 10, spinal nerve C2, and spinal nerve C3. A method to normalize breathing, normalize blood pressure, induce sleep, increase salivation, and improve vertigo, nausea, and visual dysfunction accompanying migraine is also described.
Abstract:
A device, system and method for increasing air intake by a subject is described. The device includes a vibration motor and a control unit for controlling vibrational motion output by the vibration motor. The methods include positioning the vibration motor on one or more limbs of a subject, and stimulating nerves in the limbs via the generated vibrational motion, whereby the stimulated nerve signals the brain to increase breathing rate or air intake by the subject. Accordingly, embodiments of the device activate nerve fibers that carry kinesthetic cues from the limbs in a pattern that simulates normal limb motion, and thus triggers inherent reflexes that increase ventilation in response to such motion.
Abstract:
A device, system and method for increasing air intake by a subject is described. The device includes a vibration motor and a control unit for controlling vibrational motion output by the vibration motor. The methods include positioning the vibration motor on one or more limbs of a subject, and stimulating nerves in the limbs via the generated vibrational motion, whereby the stimulated nerve signals the brain to increase breathing rate or air intake by the subject. Accordingly, embodiments of the device activate nerve fibers that carry kinesthetic cues from the limbs in a pattern that simulates normal limb motion, and thus triggers inherent reflexes that increase ventilation in response to such motion.
Abstract:
A device, system and method for increasing air intake by a subject is described. The device includes a vibration motor and a control unit for controlling vibrational motion output by the vibration motor. The methods include positioning the vibration motor on one or more limbs of a subject, and stimulating nerves in the limbs via the generated vibrational motion, whereby the stimulated nerve signals the brain to increase breathing rate or air intake by the subject. Accordingly, the device of the present invention activates nerve fibers that carry kinesthetic cues from the limbs in a pattern that simulates normal limb motion, and thus triggers inherent reflexes that increase ventilation in response to such motion.