Abstract:
A fuel cell system includes a fuel cell stack, a temperature measurement unit, and a controller. The controller is configured to, when the stack temperature is equal to or lower than a predetermined first threshold temperature at the time of startup of the fuel cell system, control a heat generation amount per unit time of the fuel cell stack to a set heat generation amount to perform a warming-up operation until the stack temperature increases to a target temperature, and when the stack temperature is equal to or higher than a predetermined second threshold temperature, execute at least one of setting the target temperature to be lower than the target temperature when the stack temperature is lower than the second threshold temperature and setting the set heat generation amount to be smaller than the set heat generation amount when the stack temperature is lower than the second threshold temperature.
Abstract:
A fuel cell system to be installed on a vehicle includes a fuel cell, a secondary battery, an SOC detector that detects a temperature and a state of charge of the secondary battery, an accelerator position detector that detects an accelerator depressed amount, and a controller that controls power to be generated by the fuel cell. The controller includes: a required generation power calculator that calculates required generation power based on the accelerator depressed amount and the temperature and the state of charge of the secondary battery; and a maximum required power calculator that calculates maximum required power based on the accelerator depressed amount and the temperature and the state of charge of the secondary battery. The maximum required power includes allowable charging power correlated with a maximum value of charging power. If determining that a condition for rapid reduction in consumption power of a motor is satisfied, the controller sets the allowable charging power to zero and calculates the maximum required power. If the required generation power exceeds the maximum required power, the controller makes the fuel cell generate power responsive to the maximum required power.
Abstract:
A service providing mobile unit 1 comprised of a frame 2 forming a ring shape about a horizontal axis, movement-use wheels 4, 5 attached to the bottom part of the frame 2, a hydrogen storage tank insert pan 10 formed inside the frame 2, and a fuel cell 40 arranged inside the frame 2. Hydrogen is supplied to the fuel cell 40 from a replaceable hydrogen storage tank 20 inserted into the hydrogen storage tank insert part 10. A service providing space 3 having a ring-shaped inner circumference surface of the frame 2 as its outer edges is formed by the frame 2, and power can be supplied from the fuel cell 40 to a service providing unit installed inside the service providing space 3.
Abstract:
A fuel cell system includes: a fuel cell; a temperature acquisition unit that acquires a temperature at a specific position in a vehicle equipped with the fuel cell system; a purge unit that purges the fuel cell when an operation of the fuel cell is stopped; and a control unit that acquires the temperature at the specific position from the temperature acquisition unit at least once from when the fuel cell system is stopped until the fuel cell system is started again, and uses the temperature at the specific position to determine whether purging at a stop by the purge unit is necessary when the fuel cell system is stopped next.
Abstract:
A fuel cell system includes: a fuel cell generating electricity when being supplied with anode gas and cathode gas; a supply channel through which the anode gas to be supplied to the fuel cell flows; a discharge channel through which anode-off gas discharged from the fuel cell flows; a discharge valve provided on the discharge channel and opened to discharge the anode-off gas; and a control section controlling opening/closing of the discharge valve. The control section calculates a valve open time of the discharge valve corresponding to a target value of a discharge amount of the anode-off gas by using an aperture ratio of the discharge channel and the target value, and closes the discharge valve based on the valve open time, the aperture ratio of the discharge channel being calculated from a first discharge amount of the anode-off gas, which is discharged by opening of the discharge valve.
Abstract:
A fuel cell system to be installed on a vehicle includes a fuel cell, a secondary battery, an SOC detector that detects a temperature and a state of charge of the secondary battery, an accelerator position detector that detects an accelerator depressed amount, and a controller that controls power to be generated by the fuel cell. The controller includes: a required generation power calculator that calculates required generation power based on the accelerator depressed amount and the temperature and the state of charge of the secondary battery; and a maximum required power calculator that calculates maximum required power based on the accelerator depressed amount and the temperature and the state of charge of the secondary battery. The maximum required power includes allowable charging power correlated with a maximum value of charging power. If determining that a condition for rapid reduction in consumption power of a motor is satisfied, the controller sets the allowable charging power to zero and calculates the maximum required power. If the required generation power exceeds the maximum required power, the controller makes the fuel cell generate power responsive to the maximum required power.
Abstract:
A fuel cell system includes a fuel cell a temperature acquisition unit that acquires a temperature of the fuel cell, a cell unit voltage sensor that detects a voltage of each of fuel cell units, and a controller that controls the fuel cell system. The controller restricts an output current of the fuel cell when the voltage of the individual fuel cell unit becomes equal to or lower than a predetermined value in a warm-up operation, execute the warm-up operation when the temperature of the fuel cell is equal to or lower than a predetermined temperature, after the fuel cell system receives a start-up request, and stop an operation of the fuel cell system when a stop condition including that the voltage of the fuel cell unit is continuously equal to or lower than a predetermined voltage value for a predetermined time is satisfied after start of the warm-up operation.
Abstract:
A fuel cell system includes a fuel cell, a first temperature sensor configured to acquire a first temperature that is a temperature of the fuel cell, a plurality of accessories that is used to operate the fuel cell, a second temperature sensor configured to acquire a second temperature that is a temperature of at least any one of the plurality of accessories, and a controller configured to perform control on the plurality of accessories to execute a warming-up operation of the fuel cell. The controller is configured to execute the warming-up operation when any of a first condition that the first temperature is lower than a predetermined first threshold temperature and a second condition that the first temperature is equal to or higher than the first threshold temperature and the second temperature is lower than a predetermined second threshold temperature is satisfied.
Abstract:
A fuel cell system 1 is provided with a fuel cell 10 including a hydrogen passage 10h, a hydrogen supply path 31 connected to an inlet of a hydrogen passage, an injector 44 arranged in the hydrogen supply path, an anode off gas passage AP connected to an outlet of the hydrogen passage, and a drain control valve 46 provided in the anode off gas passage. Hydrogen replacement is performed in which the injector is opened so that a pressure inside the hydrogen passage becomes a required hydrogen pressure while the drain control valve is opened. The fuel cell system 1 is further provided with a pressure sensor 94a detecting the pressure inside the hydrogen passage. Hydrogen replacement is not performed when it is judged that the pressure inside the hydrogen passage is higher than the required hydrogen pressure.
Abstract:
A fuel cell system herein may include a battery configured to supply electric power to a fuel cell auxiliary device used for activating a fuel cell stack. When remaining electric energy in the battery is higher than an electric energy threshold upon activation of the fuel cell stack, a controller of the fuel cell system may start outputting current from the fuel cell stack after a fuel concentration in the fuel cell stack reaches a predetermined fuel concentration threshold, and when the remaining electric energy decreases below the electric energy threshold while the fuel concentration is being increased, the controller may start outputting current from the fuel cell stack regardless of the fuel concentration in the fuel cell stack. The current can be obtained from the fuel cell stack even when the remaining electric energy in the battery is low.