Abstract:
The present invention pertains to a system and method for X-ray imaging wherein a targeted fluence at the detector for projection images can be achieved at a plurality of projection angles around the imaging subject by control of exposure times implemented during image acquisition. Exposure time for a second projection image may be determined by the fluence in a first projection image, and in a third projection image by the fluence in a second projection image, where projection images are acquired within two degrees of one another. An acquisition parameter calculation can be configured to calculate acquisition parameters, such as said exposure times, to achieve the targeted fluence in projection images and can be coupled to a rotation controller that implements the acquisition parameters by controlling a relative angle between the imaging subject and X-ray image acquisition device.
Abstract:
The present invention pertains to a system and method for adaptive X-ray filtration comprising a volume of X-ray attenuating material with a central less attenuating three-dimensional region. The volume of X-ray attenuating material can be positioned within 10 cm from an X-ray source and rotated around an internal axis of rotation. The volume of X-ray attenuating material can be symmetric around the internal axis while the central less attenuating region can be asymmetric around the internal axis. Rotating the volume by a predetermined angle around the internal axis can change the amount of attenuation of an X-ray beam through the filter. The volume can be rotated by the same predetermined angle as an imaging subject or X-ray source and detector are rotated during X-ray image acquisition.
Abstract:
The present invention pertains to an apparatus and method for X-ray imaging a human patient. A vacuum bell bonded to an X-ray radiation-permeable window that can emit X-ray radiation from a plurality of spots located 1 cm from its edge, a collimator, and a detector are used. A ring of stationary X-ray sources can also be used with a stationary collimator and a rotating slot collimator and detector. An X-ray beam can be aligned in an X-ray system by establishing a position of the beam with respect to a moving collimator at a number of points in time, monitoring the velocity of the collimator, navigating the beam to a calculated position of a hole in the collimator, and correcting the alignment of the beam based on the location of the beam on the detector.
Abstract:
The present invention pertains to an apparatus and method for X-ray imaging a human patient. A vacuum bell bonded to an X-ray radiation-permeable window that can emit X-ray radiation from a plurality of spots located 1 cm from its edge, a collimator, and a detector are used. A ring of stationary X-ray sources can also be used with a stationary collimator and a rotating slot collimator and detector. An X-ray beam can be aligned in an X-ray system by establishing a position of the beam with respect to a moving collimator at a number of points in time, monitoring the velocity of the collimator, navigating the beam to a calculated position of a hole in the collimator, and correcting the alignment of the beam based on the location of the beam on the detector.
Abstract:
The present invention pertains to an apparatus and method for inverse geometry volume computed tomography medical imaging of a human patient. A plurality of stationary x-ray sources for producing x-ray radiation are used. A rotating collimator located between the plurality of x-ray sources and the human patient is also used. A rotating detector can also be used.
Abstract:
The present invention pertains to a method and apparatus for x-ray ionizing radiation control and ionizing radiation control. A digital representation of an inanimate object is formed. The amount of the radiation at a surface of the inanimate object is simulated. The radiation-matter interaction for a material of the inanimate object is calculated. The amount of energy deposited at a plurality of locations at the inanimate object is calculated. The digital representation of the inanimate object is modified in response to an input from a user and the modified digital representation of the inanimate object is displayed.
Abstract:
The present invention pertains to a system and method for X-ray imaging wherein a targeted fluence at the detector for projection images can be achieved at a plurality of projection angles around the imaging subject by control of exposure times implemented during image acquisition. Exposure time for a second projection image may be determined by the fluence in a first projection image, and in a third projection image by the fluence in a second projection image, where projection images are acquired within two degrees of one another. An acquisition parameter calculation can be configured to calculate acquisition parameters, such as said exposure times, to achieve the targeted fluence in projection images and can be coupled to a rotation controller that implements the acquisition parameters by controlling a relative angle between the imaging subject and X-ray image acquisition device.
Abstract:
The present invention pertains to a system and method for X-ray imaging wherein a targeted fluence at the detector for projection images can be achieved at a plurality of projection angles around the imaging subject by control of exposure times implemented during image acquisition. Exposure time for a second projection image may be determined by the fluence in a first projection image, and in a third projection image by the fluence in a second projection image, where projection images are acquired within two degrees of one another. An acquisition parameter calculation can be configured to calculate acquisition parameters, such as said exposure times, to achieve the targeted fluence in projection images and can be coupled to a rotation controller that implements the acquisition parameters by controlling a relative angle between the imaging subject and X-ray image acquisition device.
Abstract:
The present invention pertains to a system and method for X-ray imaging wherein a targeted fluence at the detector for projection images can be achieved at a plurality of projection angles around the imaging subject by control of exposure times implemented during image acquisition. Exposure time for a second projection image may be determined by the fluence in a first projection image, and in a third projection image by the fluence in a second projection image, where projection images are acquired within two degrees of one another. An acquisition parameter calculation can be configured to calculate acquisition parameters, such as said exposure times, to achieve the targeted fluence in projection images and can be coupled to a rotation controller that implements the acquisition parameters by controlling a relative angle between the imaging subject and X-ray image acquisition device.
Abstract:
The present invention pertains to an apparatus and method for inverse geometry volume computed tomography medical imaging of a human patient. A plurality of stationary x-ray sources for producing x-ray radiation are used. A rotating collimator located between the plurality of x-ray sources and the human patient is also used. A rotating detector can also be used.