Abstract:
A communication module includes a plurality of duplexers, wherein at least either IDT electrodes of transmit filters of at least two of the plurality of duplexers having a different transmit band or IDT electrodes of receive filters of at least two of the plurality of duplexers having a different receive band are composed of a same material, have a same thickness and are provided on a single piezoelectric substrate.
Abstract:
A semiconductor device includes a lower-layer substrate, a fuse above the lower-layer substrate and blown by radiation with light, a silicon oxide film on the fuse and on an exposed portion of the surface of the lower-layer substrate, and a silicon nitride film on the silicon oxide film. The portion of the silicon oxide film on the surface of the lower-layer substrate is thicker than the fuse, and the silicon oxide film has an opening opposite the fuse.
Abstract:
An image forming apparatus comprises: an image forming section that forms an image on a sheet; a density sensor that measures the image formed on the sheet and outputs a measured value corresponding to a density of the image; a conversion data storing section that stores plural conversion data showing relationship between the measured value outputted from the density sensor and the image density, for each sheet type and each screen for an image; a conversion data selection section that selects at least one conversion data from the plural conversion data stored in the conversion data storing section; and a density adjustment section that adjusts a density for an image formed by the image forming section based on a measured value acquired by measuring a prescribed image formed on a sheet and on the conversion data selected by the conversion data selection section.
Abstract:
A short arc type discharge lamp comprises a pair of electrodes, at least one of which has an electrode main body portion and an axis portion and/or a taper portion formed between the electrode main body portion and the axis portion, wherein in the at least one of the electrodes, the axis portion has an outer diameter smaller than that of the electrode main body portion, and at least one groove extending in an axis line direction of the electrode is formed in the electrode main body portion, the axis portion or the taper portion.
Abstract:
A bookbinding system to produce plural booklets includes: a bookbinding apparatus which forms a sheet bundle by stacking plural sheets on each of which an image has been formed by an image forming apparatus, and joins a spine of the sheet bundle and a cover sheet with an adhesive; a coating section which applies the adhesive onto the spine of the sheet bundle; a measuring section which measures a thickness of the sheet bundle; a calculating section which calculates at least an amount of the adhesive applied onto the spine, or charge information corresponding to the amount of the adhesive applied, on the basis of thickness information of the sheet bundle measured; and a first accumulating section which carries out at least an accumulating operation that accumulates the amount of adhesive calculated, or an accumulating operation that accumulates the charge information calculated.
Abstract:
Image forming apparatus includes an image forming unit, a paper transport unit, a paper position measuring unit, a deviation compensating unit in preparation to image forming, a control unit for controlling the image formation and the deviation compensation, wherein the control unit includes a function that receives the results measured by the paper position measuring unit and compensates the deviation of the paper in accordance with the measured results, wherein, the control unit shifts the paper toward a predetermined position in the direction across the paper transporting direction and shift the image forming position in the main scanning direction in accordance with the predetermined position of the paper, wherein, the control unit decides the predetermined position so that the image area based on the image forming position being shifted does not go out of the range of the image formable area.
Abstract:
An acoustic wave device includes: a piezoelectric substrate; a dielectric layer formed on the piezoelectric substrate; and first and second comb-tooth electrodes formed on the dielectric layer, the dielectric layer having a first thickness between the first comb-tooth electrodes and the piezoelectric substrate and a second thickness between the second comb-tooth electrodes and the piezoelectric substrate, the first and second thicknesses being different from each other.
Abstract:
A discharge lamp device comprising a high pressure discharge lamp having a discharge space and a pair of main electrodes in an interior of said discharge space, a starting assistance light source adapted to radiate UV radiation towards said discharge space, and a power supply device to light the high pressure discharge lamp and the starting assistance light source, wherein said starting assistance light source contains at least a rare gas for starting and carbon monoxide (CO) as a light emitting substance, and said power supply device is adapted to generate a high starting voltage at a time lighting of said high pressure discharge lamp is started and afterwards switch to a voltage for steady-state lighting, such that said starting assistance light source radiates by means of said high starting voltage but does not radiate by means of said voltage for steady-state lighting.
Abstract:
A method of manufacturing a semiconductor device includes forming a first insulating film supported by a semiconductor substrate, forming an aluminum layer supported by the first insulating film, etching the aluminum layer to form a bonding pad and fuse elements, depositing by plasma chemical vapor deposition a second insulating film covering the bonding pad and the fuse elements, the second insulating film having planar portions between the fuse elements and ridged portions opposite the fuse elements, depositing by plasma chemical vapor deposition a third insulating film covering the second insulating film, etching the third insulating film to form a first hole exposing a first region of the second insulating film, opposite the fuse elements, and a second hole exposing a second region of the second insulating film, opposite at least part of said bonding pad, and etching the second insulating film to form a third hole exposing at least part of the bonding pad.