Abstract:
A driving apparatus for an air conditioning system has a first and a second electrical actuators for driving air control doors, wherein the first and second actuators are accommodated in a common housing so that they are modularized to each other. The driving apparatus further has a third electrical actuator for driving another air control door, wherein the third actuator is provided at a position separated from the housing. Driving circuits for the first to third actuators are formed on a single IC chip or on a single electrical circuit board. The driving circuits formed on the IC chip or the electrical circuit board is accommodated in the housing for the first and second actuators.
Abstract:
A mounting structure of a motor drive circuit and an electric compressor are disclosed. A sub-communication circuit 50a of a communication circuit 50 is accommodated in a depression 11v of a compressor housing 11. Semiconductor switching devices S1 to S6 are arranged on the flat mounting portion 11t of the compressor housing 11, i.e. on the outside of the depression 11v. As a result, the sub-communication circuit 50a can be isolated from the semiconductor switching devices S1 to S6. Although the switching operation of the semiconductor switching devices S1, S2, . . . , S6 generates electromagnetic noise, since the sub-communication circuit 50a is accommodated in the depression 11v, the sub-communication circuit 50a receives less electromagnetic noise.
Abstract:
A drive control device performs a mode change with a constant current between a first mode in which an opening degree of a refrigerant passage is changed in a first flow region where a flow rate of refrigerant flowing through the refrigerant passage is lower than or equal to a predetermined value and a second mode in which the opening degree of the refrigerant passage is changed in a second flow region where the flow rate of refrigerant flowing through the refrigerant passage is higher than the predetermined value. The drive control device increases a value of the constant current at the mode change to be larger than a value of a constant current when the opening degree of the refrigerant passage is changed in the first mode.
Abstract:
A heat sink member divides a circuit board into a first circuit part and a second circuit part. The first circuit part includes circuit elements, such as a transistor, an electric current sensing resistor and a choke coil, which generate heat upon operation thereof. The second circuit part includes a control circuit, which controls operation of the motor.
Abstract:
A heat sink member divides a circuit board into a first circuit part and a second circuit part. The first circuit part includes circuit elements, such as a transistor, an electric current sensing resistor and a choke coil, which generate heat upon operation thereof. The second circuit part includes a control circuit, which controls operation of the motor.
Abstract:
A drive control device performs a mode change with a constant current between a first mode in which an opening degree of a refrigerant passage is changed in a first flow region where a flow rate of refrigerant flowing through the refrigerant passage is lower than or equal to a predetermined value and a second mode in which the opening degree of the refrigerant passage is changed in a second flow region where the flow rate of refrigerant flowing through the refrigerant passage is higher than the predetermined value. The drive control device increases a value of the constant current at the mode change to be larger than a value of a constant current when the opening degree of the refrigerant passage is changed in the first mode.
Abstract:
An expansion valve device includes an electric driver having a stepping motor so as to control an opening degree of a refrigerant passage by displacing a valve member in accordance with a rotation angle of the stepping motor. A controller drives the stepping motor in a micro step when a flow rate of refrigerant flowing through the refrigerant passage is equal to or less than a predetermined value, and drives the stepping motor in a full step when the flow rate of the refrigerant is larger than the predetermined value.
Abstract:
An electric fan system has a first electric blower 10, which utilizes a brushless motor, and a second electric blower, which utilizes a brushed motor, for distributing the cooling air to the radiator and the condenser. The system has an electronic engine control unit which activates only the first electric blower when it determines that the cooling water temperature is less than T2, and activates both the first and second electric blowers when it determines that the cooling water temperature is T2 or higher. The water temperature is based on a detection output from a cooling water temperature sensor. Thus, since the electric blower is not activated unless the cooling water temperature becomes T2 or higher, use of the brushed motor is limited and its life is increased.
Abstract:
An electric fan system has a first electric blower 10, which utilizes a brushless motor, and a second electric blower, which utilizes a brushed motor, for distributing the cooling air to the radiator and the condenser. The system has an electronic engine control unit which activates only the first electric blower when it determines that the cooling water temperature is less than T2, and activates both the first and second electric blowers when it determines that the cooling water temperature is T2 or higher. The water temperature is based on a detection output from a cooling water temperature sensor. Thus, since the electric blower is not activated unless the cooling water temperature becomes T2 or higher, use of the brushed motor is limited and its life is increased.