Abstract:
A photoelectric conversion element includes: an electrically conductive thin layer; an organic photoelectric conversion layer containing a compound having a partial structure represented by formula (I) and a fullerene or a fullerene derivative; and a transparent electrically conductive thin layer: X represents O, S or N—R10, R10 represents a hydrogen atom or a substituent, Rx and Ry represent a hydrogen atom or a substituent, with at least one representing an electron-withdrawing group, Rx and Ry may combine to form a ring, R represents a bond (—), a hydrogen atom or a substituent, with at least one being the bond, nr represents an integer of 1 to 4, R's may be the same or different when nr is 2 or more, and R's at the 2- and 3-positions or R's at the 5- and 6-positions may combine with each other to form a ring.
Abstract:
An organic photoelectric conversion material for a photoelectric conversion element is provided, the organic photoelectric conversion material represented by formula 1 and having a molecular weight of 250 or greater but not greater than 800: wherein, A represents an electron withdrawing atomic group; R1, R2 and R3 each independently represents a hydrogen atom or a substituent; L represents a divalent TC conjugated substituent; D represents an electron donating aromatic substituent; and X represents O, S, or N—Ra in which Ra represents a hydrogen atom or a substituent.
Abstract:
A photoelectric conversion element comprises a first photoelectric conversion part, the first photoelectric conversion part comprising: a pair of electrodes; and a photoelectric conversion film between the pair of electrodes, wherein the photoelectric conversion film comprises an organic photoelectric conversion material having an absorption peak in an infrared region of an absorption spectrum within a combined range of a visible region and the infrared region and generating an electric charge according to light absorbed, and the first photoelectric conversion part as a whole transmits 50% or more of light in the visible region.
Abstract:
Provided is a charge transport material represented by the following general formula (1) or (2). In the foregoing general formulae, each of L1 and L2 independently represents a connecting group; each of R and RN independently represents a substituent; each of R1 and R2 independently represents a substituent, provided that R1 and R2 do not represent an aryl group at the same time; each A independently represents a carbon atom or a nitrogen atom; n represents an integer of 2 or more and not more than 10; and each m independently represents an integer.
Abstract:
An organic electroluminescent device is provided and includes: a cathode; an anode; and a light-emitting layer between the cathode and the anode. The light-emitting layer includes a compound represented by formula (1). In formula (1), L represents a linking group; A1, A2, A3, A4, A5, A6, A7, A8, A9, and A10 each independently represent a carbon atom or a nitrogen atom, provided that at least two of A1, A5, A6, and A10 each represent a carbon atom having R′; R′ represents a substituent having a carbon atom at a bonding position thereof; a plurality of Rs each independently represent a substituent; m represents an integer; and n represents an integer of 2 to 10.
Abstract:
An organic photoelectric conversion material for use in an organic thin-film photoelectric conversion device, containing a compound represented by formula 1; and an organic thin-film photoelectric conversion device having a photoelectric conversion layer which containing the organic photoelectric conversion material: wherein D represents an electron-donating aromatic substituent whose bonding site atom is a sp2 carbon atom; and a plurality of D may be the same or different from each other.
Abstract:
An organic photoelectric conversion material for use in an organic thin-film photoelectric conversion device, containing a compound represented by formula 1; and an organic thin-film photoelectric conversion device having a photoelectric conversion layer which containing the organic photoelectric conversion material: wherein D represents an electron-donating aromatic substituent whose bonding site atom is a sp2 carbon atom; and a plurality of D may be the same or different from each other.
Abstract:
A transparent organic thin film transistor, which contains a p-type organic semiconductor material employed in a semiconductor active layer of the transparent organic thin film transistor,wherein the p-type organic semiconductor material has a maximum absorbance of 0.2 or less in a visible range of 400 to 700 nm, in which the maximum absorbance is determined in the case where the thin film is made to have a film thickness of 30 nm.
Abstract:
A photoelectric conversion element is provided and includes: an electrically conductive thin layer; an organic photoelectric conversion layer containing a compound having a partial structure represented by the following formula (I) and a fullerene or a fullerene derivative; and a transparent electrically conductive thin layer. X represents O, S or N—R10, R10 represents a hydrogen atom or a substituent, Rx and Ry represent a hydrogen atom or a substituent, with at least one representing an electron-withdrawing group, Rx and Ry may combine to form a ring, R represents a bond (—), a hydrogen atom or a substituent, with at least one being the bond, nr represents an integer of 1 to 4, R's may be the same or different when nr is 2 or more, and R's at the 2- and 3-positions or R's at the 5- and 6-positions may combine with each other to form a ring.
Abstract:
A squarylium dye represented by formula (1): wherein A1 and B1 each independently represents a ring structure, and R1 and R2 each independently represents a substituent having a carbon number of 1 to 12.