Abstract:
A MAP decoder may be implemented in parallel. In one implementation, a device may receive an input array that represents received encoded data and calculate, in parallel, a series of transition matrices from the input array. The device may further calculate, in parallel, products of the cumulative products of the series of transition matrices and an initialization vector. The device may further calculate, in parallel and based on the products of the cumulative products of the series of transition matrices and the initialization vector, an output array that corresponds to a decoded version of the received encoded data in the input array.
Abstract:
A device initiates a technical computing environment (TCE), and receives, via the TCE, a program command that permits the TCE to access a graphical processing unit that is remote to the device, where the program command permits the TCE to seamlessly transfer data to the remote GPU. The device transforms, via the TCE, the program command into a program command that is executable by the remote GPU, and provides the transformed program command to the remote GPU for execution. The device also receives, from the remote GPU, one or more results associated with execution of the transformed program command by the remote GPU, and utilizes the one or more results via the TCE.
Abstract:
A device receives, via a technical computing environment, a program that includes a parallel construct and a command to be executed by graphical processing units, and analyzes the program. The device also creates, based on the parallel construct and the analysis, one or more instances of the command to be executed in parallel by the graphical processing units, and transforms, via the technical computing environment, the one or more command instances into one or more command instances that are executable by the graphical processing units. The device further allocates the one or more transformed command instances to the graphical processing units for parallel execution, and receives, from the graphical processing units, one or more results associated with parallel execution of the one or more transformed command instances by the graphical processing units.
Abstract:
A MAP decoder may be implemented in parallel. In one implementation, a device may receive an input array that represents received encoded data and calculate, in parallel, a series of transition matrices from the input array. The device may further calculate, in parallel, products of the cumulative products of the series of transition matrices and an initialization vector. The device may further calculate, in parallel and based on the products of the cumulative products of the series of transition matrices and the initialization vector, an output array that corresponds to a decoded version of the received encoded data in the input array.
Abstract:
A method comprising receiving data, where the data includes one or more elements, the data is associated with a first set of indices, and the first set of indices references the one or more elements. The method may further include folding a plurality of indices into a single index, where the single index references the one or more elements of the received data that were referenced by the plurality of indices, the folding generates a second set of indices, and the folding is performed when concurrent process threads are not generated based on the first set of indices. The method may further include determining whether concurrent process threads should be generated based on the second set of indices and generating the concurrent process threads for the second set of indices when the determining determines that the concurrent process threads should be generated based on the second set of indices.
Abstract:
A client device may receive information that identifies tasks to be performed by worker devices. The tasks may include at least one task that is to be performed by all worker devices, and may include at least one task that is to be performed by one worker device. The client device may identify, based on the information that identifies the tasks, an order and dependencies associated with performing the tasks. The client device may determine a task, of the tasks, to be performed by a work device, of the worker devices, based on the order and the dependencies. The client device may send, to the worker device, information associated with performing the task, and may receive, from the worker device, an indication that the task has been performed. The client device may determine, based on the order and the dependencies, another task to be performed by the worker device.