Abstract:
A programming element is provided that defines model attributes in response to mode change events in a graphical modeling environment. Such definition may involve any signal attribute such as dimensions, data types, complexity and sample times. Events that trigger definition of model attributes may be explicit signaling events generated by other elements, elements within the block diagram programming environment, and elements external from the environment. Implicit events may also trigger definition of model attributes, such as a change of attribute in an input signal.
Abstract:
A method may include causing a first model to be executed. The causing the first model to be executed may be performed by a device. The method may further include causing a second model to be executed to simulate a functionality of the first model. The causing the second model to be executed may be performed by the device. The method may further include interacting with a model element, of the second model, associated with implicitly accessing information regarding a state of the first model. The state may be a representation of the first model at a particular simulation time-step. The interacting with the model may be performed by the device. The method may further include accessing, by the model element, information associated with the state of the first model. The accessing the information may be performed by the device.
Abstract:
A method may include causing a first model to be executed. The causing the first model to be executed may be performed by a device. The method may further include causing a second model to be executed to simulate a functionality of the first model. The causing the second model to be executed may be performed by the device. The method may further include interacting with a model element, of the second model, associated with implicitly accessing information regarding a state of the first model. The state may be a representation of the first model at a particular simulation time-step. The interacting with the model may be performed by the device. The method may further include accessing, by the model element, information associated with the state of the first model. The accessing the information may be performed by the device.
Abstract:
Exemplary embodiments support multi-threaded subgraph execution control within a graphical modeling or graphical programming environment. In an embodiment, a subgraph may be identified as a subset of blocks within a graphical model, or graphical program, or both. A subgraph initiator may explicitly execute the subgraph while maintaining data dependencies within the subgraph. Explicit signatures may be defined for the subgraph initiator and the subgraph either graphically or textually. Execution control may be branched wherein the data dependencies within the subgraph are maintained. Execution control may be joined together wherein the data dependencies within the subgraph are maintained. Exemplary embodiments may allow subgraphs to execute on different threads within a graphical modeling or programming environment.