Abstract:
Processing external code includes: parsing the external code to identify a first semantic entity, mapping the first semantic entity to a second semantic entity, the first semantic entity comprising a first set of one or more specified attributes and the second semantic entity comprising a second set of one or more attributes that are capable of being specified, determining that a first attribute of the second set of one or more attributes does not have a corresponding specified attribute within the first set of one or more specified attributes, determining available information for specifying the first attribute of the second set of one or more attributes, and storing the second semantic entity in association with the first attribute of the second set of one or more attributes specified based on user selection or specifying the first attribute in response to available information provided to a user interface system.
Abstract:
A computer-readable memory device may include instructions to store data describing a state machine model including source states and destination states. The device may also include instructions to store, for each of the source states, a condition field identifying a condition upon which, when satisfied, the state machine model transitions from the source state to one of the destination states. The device may also include instructions to store, for each of source states, a destination field identifying the one of the destination states. Each of at least two of the source states may identify an identical destination state in the corresponding destination field. Each of at least two of the source states may identify an identical condition in the corresponding condition field.
Abstract:
Processing external code includes: parsing the external code to identify a first semantic entity, mapping the first semantic entity to a second semantic entity, the first semantic entity comprising a first set of one or more specified attributes and the second semantic entity comprising a second set of one or more attributes that are capable of being specified, determining that a first attribute of the second set of one or more attributes does not have a corresponding specified attribute within the first set of one or more specified attributes, determining available information for specifying the first attribute of the second set of one or more attributes, and storing the second semantic entity in association with the first attribute of the second set of one or more attributes specified based on user selection or specifying the first attribute in response to available information provided to a user interface system.
Abstract:
A computing device may include a memory to store data that describes a state machine model that includes destination states and source states. The source states may be associated with conditions upon which the state machine model is to transition from a corresponding source state to one of the destination states. The device may also include a processor configured to generate data to describe a state diagram from the data that describes the state machine model. The state diagram may include the graphical symbols and lines. Each of the graphical symbols may represent one of the source states or one of the destination states. The lines may represent transitions and include one or more vertical lines to represent transitions to one of the destination states from more than one of the source states. The graphical symbol may represent the one of the destination states is not adjacent to the graphical symbols to represent the more than one of the source states. The processor may arrange graphical symbols in a first row, arrange lines, and arrange vertical lines in a second row that does not overlap with the first row.
Abstract:
Exemplary embodiments enable debugging executable code using a debugger in a computational device that provides a programming environment including a presentation layer. For example, an exemplary method includes providing a first marshalling function that receives a portion of information manipulated by the executable code and produces a presentation layer representation of the portion of the information. The presentation layer representation is compatible with a debugger that debugs the executable code. An exemplary method also includes debugging the executable code to produce a presentation layer representation of the portion of the information with the first marshalling function so as to display the presentation layer representation of the portion of the information to a user via a display device. The debugging also includes modifying the presentation layer representation of the portion of the information to produce modified information for use by the executable code, a device, or a user.
Abstract:
A computer-readable memory device may include instructions to store data describing a state machine model including source states and destination states. The device may also include instructions to store, for each of the source states, a condition field identifying a condition upon which, when satisfied, the state machine model transitions from the source state to one of the destination states. The device may also include instructions to store, for each of source states, a destination field identifying the one of the destination states. Each of at least two of the source states may identify an identical destination state in the corresponding destination field. Each of at least two of the source states may identify an identical condition in the corresponding condition field.
Abstract:
A computing device may include a memory to store data that describes a state machine model that includes destination states and source states. The source states may be associated with conditions upon which the state machine model is to transition from a corresponding source state to one of the destination states. The device may also include a processor configured to generate data to describe a state diagram from the data that describes the state machine model. The state diagram may include the graphical symbols and lines. Each of the graphical symbols may represent one of the source states or one of the destination states. The lines may represent transitions and include one or more vertical lines to represent transitions to one of the destination states from more than one of the source states. The graphical symbol may represent the one of the destination states is not adjacent to the graphical symbols to represent the more than one of the source states. The processor may arrange graphical symbols in a first row, arrange lines, and arrange vertical lines in a second row that does not overlap with the first row.