Abstract:
Embodiments relate to organic and aqueous dispersions of exfoliated bundles and individualized carbon nanothreads, and a method for making the dispersions. Embodiments involve reducing carbon nanothread crystals by an alkali metal or a mixture of alkali metals to form a carbon nanothread alkali metal compound. The carbon nanothread alkali metal compounds can be spontaneously soluble in polar aprotic organic solvents to form stable carbon nanothread dispersions. The dispersions and methods of making the same can be used for preparing carbon nanothread films for electronic devices, electrocatalytic electrodes, sensing devices and carbon nanothread/polymer nanocomposites.
Abstract:
A group of reductive 2D materials (R2D) with extended reactive vacancies and a method for making the R2D with extended reactive vacancies are provided, especially the example of the reductive boron nitride (RBN). To create defects such as vacancies, boron nitride (BN) powders are milled at cryogenic temperatures. Vacancies are produced by milling, and the vacancies can be used to reduce various metal nanostructures on RBN. Due to the thermal stability of the RBN and the enhanced catalytic performance of metal nanostructures, RBN-metals can be used for different catalysts, including electrochemical catalysts and high temperature catalysts.
Abstract:
We provide a method for the in situ development of graphene containing silicon carbide (SiC) matrix ceramic composites, and more particularly to the in situ graphene growth within the bulk ceramic through a single-step approach during SiC ceramics densification using an electric current activated/assisted sintering (ECAS) technique. This approach allows processing dense, robust, highly electrical conducting and well dispersed nanocomposites having a percolated graphene network, eliminating the handling of potentially hazardous nanostructures. Graphene/SiC components could be used in technological applications under strong demanding conditions where good electrical, thermal, mechanical and/or tribological properties are required, such as micro and nanoelectromechanical systems (MEMS and NEMS), sensors, actuators, heat exchangers, breaks, components for engines, armors, cutting tools, microturbines or microrotors.
Abstract:
Embodiments are presented herein that provide a TMD system wherein the first layered material is made of heterobilayers or multilayers with semiconducting direct band gaps. The first layered material may be made of multiple layers of different TMD with different stackings, exhibiting smaller direct and indirect band gaps smaller than monolayer systems of TMD.
Abstract:
A group of reductive 2D materials (R2D) with extended reactive vacancies and a method for making the R2D with extended reactive vacancies are provided, especially the example of the reductive boron nitride (RBN). To create defects such as vacancies, boron nitride (BN) powders are milled at cryogenic temperatures. Vacancies are produced by milling, and the vacancies can be used to reduce various metal nanostructures on RBN. Due to the thermal stability of the RBN and the enhanced catalytic performance of metal nanostructures, RBN-metals can be used for different catalysts, including electrochemical catalysts and high temperature catalysts.
Abstract:
The invention provides enrichment platform devices for size-based capture of particles in solution. The enrichment platform device is useful for label-free capture of any particle. The invention relates to enrichment platform devices using nanowires and vertically aligned carbon nanotubes. The invention provides methods for making the enrichment platform devices. The invention provides methods for using the enrichment platform devices for filtering particles, capturing particles, concentrating particles, and releasing viable particles.
Abstract:
We provide a method for the in situ development of graphene containing silicon carbide (SiC) matrix ceramic composites, and more particularly to the in situ graphene growth within the bulk ceramic through a single-step approach during SiC ceramics densification using an electric current activated/assisted sintering (ECAS) technique. This approach allows processing dense, robust, highly electrical conducting and well dispersed nanocomposites having a percolated graphene network, eliminating the handling of potentially hazardous nanostructures. Graphene/SiC components could be used in technological applications under strong demanding conditions where good electrical, thermal, mechanical and/or tribological properties are required, such as micro and nanoelectromechanical systems (MEMS and NEMS), sensors, actuators, heat exchangers, breaks, components for engines, armours, cutting tools, microturbines or microrotors.
Abstract:
Provided are compositions that include at least one two-dimensional layer of an inorganic compound and at least one layer of an organic compound in the form of one or more polypeptides. Methods of making and using the materials are provided. The organic layer contains one or more polypeptides, each of which have alternating repeats of crystallite-forming subsequences and amorphous subsequences. The crystallite-forming subsequences form crystallites comprising stacks of one or more beta-sheets. The amorphous subsequences form a network of hydrogen bonds. A method includes i) combining one or more polypeptides with an inorganic material and an organic solvent, and ii) depositing one or more polypeptides, the inorganic material and the organic solvent onto a substrate. These steps can be repeated to provide a composite material that is a multilayer composite material. The composite materials can be used in a wide array of textile, electronic, semi-conducting, and other applications.
Abstract:
The invention provides enrichment platform devices for size-based capture of particles in solution. The enrichment platform device is useful for label-free capture of any particle. The invention relates to enrichment platform devices using nanowires and vertically aligned carbon nanotubes. The invention provides methods for making the enrichment platform devices. The invention provides methods for using the enrichment platform devices for filtering particles, capturing particles, concentrating particles, and releasing viable particles.
Abstract:
We report a method of preparation of highly elastic graphene oxide films, and their transformation into graphene oxide fibers and electrically conductive graphene fibers by spinning. Methods typically include: 1) oxidation of graphite to graphene oxide, 2) preparation of graphene oxide slurry with high solid contents and residues of sulfuric acid impurities. 3) preparation of large area films by bar-coating or dropcasting the graphene oxide dispersion and drying at low temperature. 4) spinning the graphene oxide film into a fiber, and 5) thermal or chemical reduction of the graphene oxide fiber into an electrically conductive graphene fiber. The resulting films and fiber have excellent mechanical properties, improved morphology as compared with current graphene oxide fibers, high electrical conductivity upon thermal reduction, and improved field emission properties.