Abstract:
An optical beam scanner incorporating an array of beam deflection elements commonly controlled to steer an optical beam impingent on the array is described. The beam steering elements are arranged in the array as individually controlled elements and the deflection of the beam is accomplished by setting the phase tilt and the phase offset of each element according to a calculation which removes modulo 2.pi. phase shift from the required position relative to a flat plane. Thus, the array elements can be thin and need only supply about 2 radians of phase shift. These elements may be incorporated in a planar array using beam deflection elements such as liquid crystal beam deflectors by choosing a drive scheme representing either a blazed array or a flat piston array. Operation may be designed for a large range of light wavelengths and the system may efficiently accommodate a combination of the blazed and flat piston techniques to obtain beam deflection characteristics otherwise unavailable by the exclusive use of each individual technique. By use of the liquid crystal phased array approach, rapid, high accuracy, large area beam deflection is possible without the necessity of any moving parts and with low power drive requirements. Phased arrays of the type described above may be arranged in successive parallel planes with a common beam axis to provide two-dimensional beam deflection.
Abstract:
A master oscillator power amplifier (MOPA) system which isolates the master oscillator (MO) from the return amplified beam by dividing the return beam into two components, introducing a phase shift between the components, and recombining the phase shifted beam components through constructive interference into an output beam directed away from the MO. A destructive interference return output is directed back towards the MO, but is held to a negligible level by making the phase shift approximately equal to an odd number of half-wavelengths at the return beam wavelength. In the preferred embodiment a stimulated Brillouin scattering phase conjugate mirror (PCM) is used to direct the amplified beam for a second amplification pass, while a Mach-Zender interferometer transmits the beam both before and after double amplification. The original beam is replicated after its first path through the interferometer by having the interferometer phase shift also equal an integral number of wavelengths at the input beam wavelength, prior to frequency shifting by the PCM.
Abstract:
Apparatus for compensating for inherent distortions in a modified liquid crystal light valve used in an integrated wavefront sensing and wavefront control system for laser optics. A main wavefront sensing and control system utilizes a liquid crystal light valve selected for response speed but having inherent surface non-linearities. A beam from an auxiliary laser is intermittently applied, while the main laser is blocked, to both the fast response LCLV of the main system and to a slower response LCLV of an associated correction system. The second LCLV system corrects for the non-linearities in the surface of the first LCLV and then maintains the stored correction signal for a decay interval which corresponds to several response times of the main LCLV, thus permitting the main LCLV system to perform fast correction of atmospheric aberrations in the laser beam wavefront unaffected by inherent surface non-linearities.
Abstract:
An improved phase conjugate master-oscillator power-amplifier laser system for providing a high-power low-distortion laser output beam. The system includes an improved oscillator such as a ring oscillator which rejects any of the output beam which is inadvertently fed back to the oscillator, thereby preventing unwanted oscillation. The system also includes an attenuator such as a spatial filter or an optical isolator that attenuates any amplified spontaneous emissions that may be reflected from the power amplifier to the oscillator, thereby preventing oscillator degradation that would otherwise result. The invention is particularly well-suited for a laser system which employs an SBS mirror for phase conjugation.
Abstract:
Apparatus for encoding and decoding laser pulses, or the like. At least one laser source applied laser energy to a nonlinear material in a manner such that counter-propagating beams are applied to the material. These laser beams are spatially or temporally modulated in a predetermined manner. The modulation may be continuous, or discrete, amplitude or phase modulation. Another laser source provides a probe pulse which traverses the nonlinear material and interacts with the counter-propagating laser beams in a manner known as four-wave mixing. This process generates an encoded laser pulse whose modulation pattern is a function of the modulation of the counter-propagating beams. A decoded laser pulse is obtained by applying the encoded pulse to the apparatus and reversing the modulation of the counter-propagating laser beams.
Abstract:
An adaptive imaging telescope having nonlinear sensing means for detecting an optical image received thereby. The system comprises a phase shifter, positioned at the aperture of the telescope or at an image plane thereof. This system also includes a nonlinear image quality sensor optically coupled to the phase shifter, consisting of a quadrant nonlinear detector wherein each detector element of the quadrant detector is responsive to light from the optical image, the quadrant detector comprising nonlinear photocells or detectors whose plane is positioned at an image plane of the telescope. The photocells are connected to a network for providing image quality error signals. Analog circuits are provided to receive the sensor output and provide a closed-loop return to the phase shifter.
Abstract:
A laser ultrasonic inspection apparatus and method which enables remote sensing of thickness, hardness, temperature and/or internal defect detection is disclosed. A laser generator impinges a workpiece with light for generating a thermo-elastic acoustic reaction in a workpiece. A probe laser impinges the workpiece with an annularly-shaped probe light for interaction with the acoustic signal in the workpiece resulting in a modulated return beam. A photodetector having a sensitive region for detecting an annularly-shaped fringe pattern generated by an interaction of a reference signal and with the modulated return beam at said sensitive region.
Abstract:
An electro-optical device (10) is used to alter characteristics of a light beam passing through it. In a particularly preferred embodiment, the device (10) is used as a phase stop having a dynamically variable aperture whose size is defined by the selected application of an electrical potential across one or more concentric, transparent ring-like electrodes (13, 14, 16 and 18). The electro-optical device (10) finds particular utility in a common-path interferometer (40) where fringe visibility is optimized by using suitable servo-electronics (56) to select an appropriate aperture size for the phase stop (10).
Abstract:
A laser using a stimulated Brillouin scattering (SBS) mirror and a moving grating eliminates frequency walkoff of the reflected beams. A laser using a double-SBS mirror prevents frequency walkoff by having the other side of the SBS mirror act as a conjugate moving grating.
Abstract:
Disclosed herein is an imaging system comprising a linear array of receivers and a single transmitter deployed and operated in such a manner as to produce the equivalent of a completely filled, two-dimensional array.