Abstract:
A light field data acquisition device includes optics and a light field sensor to acquire light field image data of a scene. In at least one embodiment, the light field sensor is located at a substantially fixed, predetermined distance relative to the focal point of the optics. In response to user input, the light field acquires the light field image data of the scene, and a storage device stores the acquired data. Such acquired data can subsequently be used to generate a plurality of images of the scene using different virtual focus depths.
Abstract:
Immunological assays for several biological markers for thyroid disorders in a biological sample are performed in a single test with a combination of sandwich-type, sequential competitive, and serological assays by the use of particles classified into groups that are distinguishable by flow cytometry, one group for the assay of each marker. Each group of particles is coated with a different immunological binding member, and coating densities, co-coating materials, and special buffer solutions are used to adjust for differences in the sensitivities and dynamic ranges of each of the markers in the typical sample.
Abstract:
An improved interface and display method is disclosed for clearly delineating a characteristic of a data item through a visual indicator. In the case of stock quotes, price and volume information available online may be real-time, delayed, opening, closing or after-hours. To identify such time distinctions, different color/symbol visual indicators are used, such as, for example, different colored traffic lights corresponding to the various types of data. The invention is particularly useful for complying with various trading exchange regulations in small form factor display applications, as such regulations can vary from exchange to exchange, and at the same time require clear delineation to an end user as to the type of information being viewed.
Abstract:
A light field data acquisition device includes optics and a light field sensor to acquire light field image data of a scene. In at least one embodiment, the light field sensor is located at a substantially fixed, predetermined distance relative to the focal point of the optics. In response to user input, the light field acquires the light field image data of the scene, and a storage device stores the acquired data. Such acquired data can subsequently be used to generate a plurality of images of the scene using different virtual focus depths.
Abstract:
Provided herein are exemplary methods for increasing crop yield. One exemplary method for increasing a yield of a crop includes controlling plant tissue stress by at least partially coating a plant tissue with a composition comprising an agricultural sunscreen formulation and a second agricultural chemical. The agricultural sunscreen formulation and the second agricultural chemical may be applied to the plant tissue from separate containers, wherein each container either contains the agricultural sunscreen formulation or the second agricultural chemical. Further, the agricultural sunscreen formulation and the second agricultural chemical may be applied to the crop at or near the same time. Alternatively, the agricultural sunscreen formulation and the second agricultural chemical may be applied to the crop from a shared container, wherein the shared container contains both the agricultural sunscreen formulation and the second agricultural chemical.
Abstract:
Systems, methods and computer-readable storage media are provided for automatically allocating resources based on metrics. A plurality of metric values related to a respective plurality of dimensions may be determined. A resource may be allocated to the plurality of dimensions based on the plurality of metric values. Other embodiments are described and claimed.
Abstract:
Certain light field data acquisition devices and methods of using and manufacturing such devices. In one aspect, a light field imaging device for acquiring light field image data of a scene, the device comprises optics, wherein the optics includes an optical path and a focal point, wherein the focal point is associated with a focal length of the optics. A light field sensor to acquire light field image data in response to a first user input and located at a substantially fixed, predetermined location relative to the focal point of the optics, wherein the predetermined location is substantially independent of the scene. The optical depth of field of the optics with respect to the light field sensor extends to a depth that is closer than optical infinity. Processing circuitry, coupled the user interface, to: (a) determine a first virtual focus depth of the light field image data, wherein the first virtual focus depth is different from the optical focus depth of the light field image data, (b) automatically generate data which is representative of a first image of the scene using the light field image data, wherein the first image includes a focus which corresponds to the first virtual focus depth, (c) output the data which is representative of the first image, and, after outputting the data which is representative of the first image and in response to the second user input, (d) determine a second virtual focus depth of the light field image data using data which is representative of the second user input, wherein the second user input is indicative of the second virtual focus depth, and (e) generate data which is representative of a second image of the scene which includes a focus that corresponds to the second virtual focus depth.
Abstract:
Provided herein are exemplary methods for increasing crop yield. One exemplary method for increasing a yield of a crop includes controlling plant tissue stress by at least partially coating a plant tissue with a composition comprising an agricultural sunscreen formulation and a second agricultural chemical. The agricultural sunscreen formulation and the second agricultural chemical may be applied to the plant tissue from separate containers, wherein each container either contains the agricultural sunscreen formulation or the second agricultural chemical. Further, the agricultural sunscreen formulation and the second agricultural chemical may be applied to the crop at or near the same time. Alternatively, the agricultural sunscreen formulation and the second agricultural chemical may be applied to the crop from a shared container, wherein the shared container contains both the agricultural sunscreen formulation and the second agricultural chemical.
Abstract:
A toy for a domestic animal comprises a deformable outer shell defining an interior compartment, wherein the outer shell surrounds a hollow interior compartment that includes an integral opening. A tab closure to limits the size of the opening, and removable inserts are located within the compartment, which the domestic animal can remove. The act of removing the inserts induces a pleasurable response in the domestic animal as the inserts are removed.
Abstract:
A method of enhancing corrosion resistance of a hollow vessel. The method includes providing a hollow vessel including a wall defining a cavity, providing a coating tank filled with a liquid coating having charged coating elements, submerging the hollow vessel into the liquid coating, allowing the liquid coating to pass into the cavity through at least one aperture of the wall, coating the exterior surface of the wall with a portion of the coating elements, coating the interior surface of the wall with an additional portion of the coating elements, removing the hollow vessel from the coating tank, draining the liquid coating from the cavity, heating the hollow vessel in an oven, and curing the portion of the coating elements on the exterior surface and curing the additional portion of the coating elements on the interior surface.